第3章 地形·地質概要

3.1 地形概要

調査地周辺に流れる吉野川は、幹川流路延長 194km の一級河川であり、調査地両岸は網付山な どの標高 500~800m 前後のやや急峻な山に囲まれている。

調査地周辺は段丘地形が卓越しており、住宅地や田んぼ、畑として使用されている。このほか、 JR 土讃線や徳島自動車道、国道 192 号が段丘面上に通っている。

図-3.1(1) 調査地周辺の地形状況(色別標高図) ※地理院地図より

図-3.1(2) 調査地周辺の地形状況(地形治水分類図) ※地理院地図より

3.2 地質概要

本調査地の三好市井川町付近では、吉野川の左岸側に中央構造線活動系の1つである「池田断 層」が位置し、断層を境に調査地を含む南側の基盤岩は三波川結晶片岩類からなる。吉野川両岸 には段丘堆積物が分布し、斜面には地すべり及び崖錐堆積物が点在する。沖積層は吉野川沿いに 分布する。

(1) 三波川結晶片類(Sb, Sm)

三波川結晶片岩類は、苦鉄質岩・石英片岩・泥質片岩からなり、それぞれ径数 mm の点紋(曹 長石の斑状片晶)を含む点紋片岩である。中でも泥質片岩は片理が発達しており、片理とともに 粗壁開や細密壁開が発達しやすい。

(2) 段丘堆積物(th, tm, tl)

吉野川流域では河岸段丘が良く発達し、古いものからおおきく高位(地形面高度 195~210m)・ 中位(高度 140~150m)・低位段丘(標高 110~ 115m)にまとめられている。堆積物は厚さ数 10m 以下の礫層からなる。調査地付近では中位段丘と低位段丘が分布しており、低位段丘はさらに 3 つに細分される。

(3) 地すべり及び崖錐堆積物(Ls)

吉野川周辺でみられる地すべり及び崖錐堆積物は、三波川結晶片岩類を起源とするものがほ とんどである。一般に数 cm の小角礫を多く含み、シルト及び粘土で充填された状態にある。局 所的に粘土を挟むことがあり、数 10cm の大礫もしくは巨礫も多く含まれる。

(4) 沖積層(a)

吉野川沿いでは,阿讃山地に起源を持つ吉野川側流が,本流に達する付近に扇状地堆積物が多 く形成されている。礫・砂・泥からなり,鬼界アカホヤ火山灰を挟む。

図-3.2(1) 調査地周辺の地質図 ※1/20万地質図幅「岡山及び丸亀(2002)」より

3.3 活断層概要

調査箇所付近には、吉野川の左岸側に沿って中央構造線活動系の1つである「池田断層」が位置している。讃岐山脈南麓に沿って、伊予三島から太刀野付近まで至る延長約 30kmの活断層である。断層の走向は概ね東西方向で、断層面の傾斜は約80°の北側傾斜である。

図-3.3(1) 調査地周辺の活断層 ※活断層データベースより

表-3.3(1)	池田断層の評価	※活断層データベースより

— 舟	设走向	N 80° E					
— 舟	设傾斜	60 ° N					
ŀ	思さ しょうしょう しょうしょう	47 km					
断	層型		右横ずれ				
変位の向	りき(隆起側)		-				
平均到	变位速度	4.9 m/千年	後藤・中田(2000)による河谷の横ずれ変位から求めた値の範囲中央を採用.				
単位	変位量	5.5 m	活動セグメント長から粟田(1999)の経験式により算出した値を採用.				
平均活動間隔		- 平均変位速度と単位変位量より計算した値を採用. 池ノ浦トレンチにおける 回の活動(徳島県環境生活部消防防災安全課, 2000)からは1722-2749年と られるが、断層変位が横ずれ主体のため、活動を見落としている可能性があ 相対的に信頼度が低いと考える。					
最新活動時期	野外調査結果	1648 ~ 1810 年	池ノ浦トレンチにおいて, AD 1648年の地層が断層変位を受け, AD 1810年の地 層に覆われる(徳島県環境生活部消防防災安全課, 2000)ことから推定.				
	対応する内陸地震	-	-				
地震征	发 経過率	0.26					
将来活動確率 :BPT分布·	^猛 (今後30年以内 モデルによる)	約 0 %					
将来活動確率 :ポアソン過 ³		約 3 %					

第4章 調査結果

4.1 ボーリング結果

(1) ボーリングコア観察

本調査の観察ボーリング孔一覧を表 4.1(1)に示す。

ボーリングコアの観察・記載については、ボーリング柱状図作成及びボーリングコア取扱い・ 保管要領(案)・同解説((財)日本建設情報センター,2015)に準拠し、同要領(案)の柱状図にまと めた。ボーリング試料観察の結果は、簡易柱状図として当該横断面図に投影し、地質区分断面図 を作成した。

なお、岩盤の岩級区分の目安は表 4.1(2)に、記事欄に記載した「コア軟硬」、「割れ目間隔」、 「割れ目状態」の細区分は、表 4.1(3)に示す。

次項より、各ボーリング孔のコア観察結果を示す。

71 夕	位置				
ТĊ	緯度	軽度	標高(m)	延天(m)	
R2-BNo.1	34°1'55.23"	133°51'2.71"	98.69	15	
R2-BNo.2	34° 1'54.20"	133°51'2.00"	98.67	14	
R2-BNo.3	34° 1'54.59"	133°51'2.22"	98.65	7	
R2-BNo.4	34°1'55.19"	133°51'1.83"	98.80	9	

表-4.1(1) 観察ボーリング孔一覧

岩級	特徵
A	きわめて新鮭なもので造岩鉱物および粒子は風化、変質を受けていない。き裂、節理は よく密着し、それらの面にそって風化の跡はみられないもの。 ハンマーによって打診すれ ば澄んだ音を出す。
В	岩質堅硬で開口した(たとえ1mmでも)き裂あるいは節理はなく、よく密着している。ただ し造岩鉱物および粒子は部分的に多少風化、変質が見られる。ハンマーによって打診 すれば澄んだ音を出す。
СН	造岩鉱物および粒子は石英を除けば風化作用を受けてはいるが岩質は比較的堅硬で ある。一般に褐鉄鉱などに汚染せられ、節理あるいはき裂の間の粘着力はわずかに減 少しており、ハンマーの強打によって割れ目にそって岩塊が剥脱し、剥脱面には粘土物 質の薄層が残留することがある。ハンマーによって打診すればすこし濁った音を出す。
СМ	造岩鉱物および粒子は石英を除けば風化作用を受けて多少軟化しており、岩質も多少 軟らかくなっている。節理あるいはき裂の間の粘着力は多少減少しており、ハンマーの 普通程度の打撃によって、割れ目にそって岩塊が剥脱し、剥脱面には粘土質物質の層 が残留することがある。ハンマーによって打診すればすこし濁った音を出す。
CL	造岩鉱物および粒子は風化作用を受けて軟質化しており岩質も軟らかくなっている。 節理あるいはき裂の間の粘着力は減少しており、ハンマーの軽打によって割れ目にそっ て岩塊が剥脱し、剥脱面には粘土質物質が残留する。ハンマーによって打診すれば 濁った音を出す。
D	造岩鉱物および粒子は風化作用を受けて著しく軟質化しており岩質も著しく軟らかい。 節理あるいはき裂の問の粘着力はほとんどなく、ハンマーによってわずかな打撃を与え るだけでくずれ落ちる。剥脱面には粘土質物質が残留する。ハンマーによって打診すれ ば著しく濁った音を出す。

表-4.1(2) 岩級区分の目安(田中による)

NEXCO「設計要領 第二集」より

表-4.1(3) ボーリングコア細区分基準(硬軟、割れ目間隔、割れ目状態)

硬軟区分

記号	特徴
А	極硬。ハンマーで容易に割れない。
В	硬。ハンマーで金属音を発する。
С	中硬。ハンマーで容易に割れる。
D	軟。ハンマーでボロボロ砕ける。
E	極軟。粘土状、マサ状。

割れ目間隔区分

記号	特徴
I	長さが50cm以上の棒状コア
П	長さが15~50cmの棒状コア
Ш	長さが5~15cmの棒状コア
IV	長さが5cm以下の棒状~片状コアで、かつコアの外周の一部が認められるもの
v	主として角礫状のもの
VI	主として砂状のもの
VII	主として粘土状のもの
VIII	コアの採取ができいなもの(スライムを含む)

割れ目状態区分

記号	特徴
а	密着している。あるいは分離しているが、割れ目沿いの風化、変質は認め られない
b	割れ目沿いの風化、変質は認められるが、岩片はほとんど風化、変質し ていない
с	割れ目沿いの岩片に風化、変質が認められ岩片は軟質になっている
d	割れ目として認識できない角礫状、砂状、粘土状コア

(財)日本建設情報センター「ボーリング柱状図作成要領(案)」より

表-4.1(4) コア写真付き地質層序表

地質年代		地層区分		記号	土質区分	色調	記事	N値			
	現生	盛土層	礫	В	砂混じりシルト質礫	灰褐	∮0.5~2cmの角礫主体で、最大礫径は∮20cm。 アスファルトやコンクリート片を含む。	3~27	1 1.50		
<u>ن</u> م سر وع	更新世中-後期 ~完新世	沖積層	粘土	Ac	砂礫混じり粘土	暗灰	礫分はφ0.2~0.5cm主体で、最大礫径φ2cm。植 物片を含む。	2~9	1.50		
第四紀		洪積層	光建品	计结网	礫	Dg(浅)	シルト質礫	褐	礫分はφ0.2~3cmの角礫主体で、最大礫径φ 80cm。礫種は緑色片岩や泥質片岩主体。基質は	22~49	1 2 50 4
			礫	Dg(深)	シルト質礫	褐	褐色のシルトが主体で、Dg(浅)はしまりがやや不 良で、Dg(深)は良好である。	50	13,28		
中生代	白亜紀					wSb	CL級(C~DⅢc)	暗灰~ 淡褐	ハンマーでたたくとボロボロに砕ける。長さ5cm程度の片状コア。割れ目沿いに風化が見られる。割れ目には0.2~0.5cm程度の褐色粘土を挟む。岩級細区分は、CL級(C~DⅢc)	48~50	1 6.50 <
		二波川結	崩斤宕	Sb	СМ級(ВШЬ)	淡青灰~暗青灰	割れ目間隔は主に5~20cmで、割れ目には一部 0.1~1cmの褐色粘土を挟む。割れ目に沿って風 化はあまり見られない。割れ目に沿って風化はあ まり見られない。岩級細区分はCM級(BⅢb)。	50以上	12,00		

R2-E	3No.1	孔ロ標高:	98.6892	m	10		0. 1 1		
深度		李圆冈公	히모	深	度	十項区公	石钼	記車	N値
上端	下端	地信世力		上端	下端	工具匠刀		此争	
0.00	3.90	盛土層	В	0.00	3.90	砂混じりシルト質礫	灰褐	GL-0~10cmはコンクリート。 礫分は	5、4、4
3.90	6.50	沖積層	Ac	3.90	6.50	砂礫混じりシルト	暗緑灰	礫分はφ0.2~0.5cm主体で、最大礫径φ2cm。礫種は緑色 片岩主体。植物片を含む。	5,2,2
6.50	14.70	洪積層	Dg(浅)	6.50	9.00	シルト混じり砂質礫	扫	GL-6.5~7mは暗緑灰色。礫分はφ02~3cmの角礫主体 で、最大礫径 φ80cm。礫種は緑色片岩や泥質片岩主体。 GL-9.00~9.09mのN値50は礫当たりのため支持層評価か らは除外。	22、32
			Dg(深)	9.00	14.70		149		50/9(礫当たり)、 50/8、50/13、 50/14、50/13
14.70	15.19	三波川結晶 片岩	wSb	14.70	15.15	風化片岩	淡褐	ハンマーでたたくとボロボロに砕ける。長さ5cm程度の片状 コア。割れ目沿しいこ風化が見られる。割れ目には0.2~ 0.5cm程度の褐色粘土を挟む。岩級細区分は、15.15mまで CL級(C~DIIc)、以深コア無いがCM級とみられる。(14.7m 以深は、上位礫層の巨礫の可能性もあり)	_
14.70			Sb	15.15	15.19	片岩			50/4

表-4.1(5) R2-No.1 孔層序表

図-4.1(1) R2-No.1 孔コア写真

〈掘止め根拠〉 ・基盤岩(片岩層)上位の洪積層 Dg(深)10m より以深、N 値 50 以上を連 続確認(9mでもN値50以上を確認しているが礫当たりのため除外)。 ・同層は基盤岩上位の未固結堆積物であることを考慮し、支持層確認として N値 50以上を基盤岩の 3m より長めに 5m 確認となる 15m まで掘進し、掘り 止めとした。

R2-E	BNo.2	孔ロ標高:	98.674	m											
深	度下端	业 地層区分 記号 深度		土質区分	色調	記事	N值								
<u>工</u> 페 0.00	1.50	盛土層	В	0.00	1.50	砂混じりシルト質礫	灰褐	GL-0~8cmはコンクリート。 礫分は ¢ 0.5~1cmの角礫主 体。 指圧でへこむ。	3						
1.50	2.50	沖積層	Ac	1.50	2.50	砂礫混じり粘土	暗緑灰	砂分は中~粗粒砂主体。 礫分は φ 0.2 ~ 0.5 cmの 礫主体。 指圧でへこむ。 植物片を含む。	9						
	10.70	洪積層								2.50	3.10	砂質シルト	褐	礫種は片岩の角礫からなり、礫径はφ0.5~2cmが主体。 指圧でへこむ。	46
2.50			Dg(浅)	3.10	9.15	シルト質礫	褐	礫種は泥質・緑色片岩が主体で、礫径はゆ0.5~4cmの角 礫主体。シルト分は指圧によってへこむが、深度によって へこみにくいところもある。9・10mはN値50以上を示すが未 固結層で3m未満と支持層として不適。	42、45、49、26、34						
			Dg(深)	9.15	10.70	シルト質礫	褐		50/29、50/5						
10.70	14.00	三波川結晶 片岩	Sb	10.70	14.00	風化片岩	淡褐	割れ目間隔は主に5~20cmで、割れ目には一部0.1~1cm の褐色粘土を挟む。割れ目に沿って風化はあまり見られな い。割れ目に沿って風化はあまり見られない。岩級細区分 はCM級(6 IDID)。	50/0、50/0、 50/0、50/0						

表-4.1(6) R2-No.2 孔層序表

図-4.1(2) R2-No.2 孔コア写真

〈掘止め根拠〉

・既往調査で確認された支持層(片岩層)を3m(N値 50以上を4回)確認まで掘進し、掘止めとした。

R2-BI	No.3	孔口標高:	98.649	m					
深	度	地層区分 記号 深度		土質区分	色調	記事	N值		
上端	ト端			上端	卜瑞				
0.00	1.65	盛土層	В	0.00	1.65	砂混じりシルト質礫	褐	GL-0~10cmはコンクリート。 礫分は ϕ 5mm程度の角礫主体で、礫種は片岩主体。 指圧でへこむ。	16
1.65	4.25	洪積層	Dg(浅)	1.65	4.25	シルト質礫	褐	礫分はφ10~20cmの角礫主体で、礫種は主に黒色・灰色 の泥質片岩である。礫分はφ10~20cmの角礫主体で、礫 種は主に黒色・灰色の泥質片岩である。	23,31
4.25	7.10	三波川結晶 片岩	wSb	4.25	7.10	風化片岩	暗灰	片理角約40°で片理面が発達。片理面に沿って5cm間隔 で割れ目が発達。割れ目には2~5mmの褐色粘土を挟む。 ハンマーでたたくと鈍い金属音がなる。岩級細区分は、CL 級(CITIC)と評価される。	50/19、50/10、 50/13、50/10

表-4.1(7) R2-No.3 孔層序表

図-4.1(3) R2-No.3 孔コア写真

〈掘止め根拠〉

・既往調査で確認された支持層(片岩層)を3m(N値50以上を4回)確認まで掘進し、掘止めとした。

R2-B	No.4	孔口標高:	98.801	m					
深 上端	度 下端	地層区分	記号	深上端	度	土質区分	色調	記事	N值
				0.00	1.55	シルト質礫	灰褐	φ0.5~2cmの角礫主体で、最大礫径はφ20cm。アスファ ルトやコンクリート片を含む。	7
0.00	5.60	盛土層	В	1.55	2.00	礫質シルト	褐	指圧でへこむ。 Ø 0.5~3.0cmの角礫主体。	-
				2.00	5.60	シルト質礫	灰褐	φ0.5~2.0mの角礫主体で、最大礫径はφ10cm。礫種は緑 色片岩や泥質片岩が主体。3mのN値が高いのは礫当たり のためとみられる。	27、6、5
5.60	6.00	沖積層	Ac	5.60	6.00	礫混じり粘土	暗灰	指圧でへこむ。 φ1.0~3.0cmの角礫主体。	-
6.00	0.05	三波川結晶	wSb	6.00	9.00	風化片岩	田、田	GL-6.0~6.5mは細礫状。片理角約65°で片理面が発達。 片理面に沿って風化が見られ、20cm間隔で割れ目が発達	48、50/7、50/8
0.00	9.05	片岩	Sb	9.00	9.05	片岩	""""	している。おれ日には1~40mの椅包粘工を決む。若級細 区分は9.0mまでCL級(CⅢc)と評価。9.0m以深コア無いが CM級とみられる	50/5

表-4.1(8) R2-No.4 孔層序表

図-4.1(4) R2-No.4 孔コア写真

〈掘止め根拠〉

- ・既往調査で確認された支持層(片岩層)を3m(N値50以上を4回)確認まで掘進し、掘止めとした。
- ・なお、片岩層上位 6m の N 値は 48 と 50 未満であるが、50 とほぼ同等の値 であること、貫入試験試料で基盤岩着岩(風化片岩)が明らかであること から、6m より支持層に達したものと評価した。

(3) 孔内水位

ボーリング掘進後の作業後および翌日朝の孔内水位変化を表-4.1(7)と図-4.1(5)~(8)に、断面 図上に地下水位記載したものを図-4.1(9)~(11)のとおりにまとめた。

不圧地下水の水位は山側から吉野川に向かって低下している。No.2・3 孔は片岩を掘進後、被 圧地下水による湧水が発生した。No.2孔の湧水量は1.2L/minであり、No.3孔の湧水量は0.15L/min であった。No.1・4 孔は、地層の傾斜に伴い地下水位面も傾斜することで、湧水が発生しなかっ たと考えられる。

孔名	孔口標高 DL(m)	年月日	掘進長(m)	ケーシング (m)	翌朝水位 GL-(m)	翌朝水位 DL(m)	池田※ 日雨量(mm)
D2-DNa 1	09.60	R2.10.6	8.00	6.50	4.65	94.04	0
RZ-DINO. I	96.09	R2.10.7	15.19	6.50			1.5
		R2.10.1	4.00	2.50	2.00	96.67	0
R2-BNo.2	98.67	R2.10.2	11.00	5.50	-0.50		0
		R2.10.3	14.00	5.50			0
D2-BNo 2	09.65	R2.9.29	3.50	1.50	0.30	98.35	0
NZ BINO.3	90.00	R2.9.30	7.10	1.50			7
		R2.9.23	0.50	0.00			0
	00 00	R2.9.24	6.50	5.50	4.95	93.85	7.5
RZ-DINO.4	90.80	R2.9.25	9.05	5.50	4.80	94.00	67.5
		R2.9.26	9.05	5.50			0.5

表-4.1(9) 本調査ボーリング孔の翌朝水位測定結果一覧

※気象庁より

図-4.1(6) 掘進中の孔内水位変化 (R2-BNo.2)

4.2 標準貫入試験結果

標準貫入試験結果について、表-4.2(2)に、孔ごと地質別に平均値・標準偏差を算出・整理をお こなった結果を示す。

また、図-4.2(1)~4.2(5)、表-4.4(1)、4.5(1)に、平均N値・標準偏差、個数を算出・整理を おこなった結果を示す。

上記の図表は、本調査(R2)とあわせ、既往調査(H29)の結果についても、地質区分を改めて 整理のうえ、平均N値・標準偏差、個数を算出・整理をおこない、値に相違が無いかチェックを 行った。

標準貫入試験の結果得られた、地質ごとのN値の傾向は以下のとおりにまとめられる。

- ・ 盛土 B は、平均 N 値 10 以下と締まりが悪い。
- ・ 沖積粘土 Ac は、平均 N 値 4.5 と盛土 B に比べてもさらに小さく脆弱である。
- ・ 洪積礫 Dg は、深部ほどN値は大きく、深部はN値 50以上を示す(平均N値 139.9)。浅部でも平均N値は 35.0と 30以上を示しており、締まりは全般に良好である。
- 基盤岩の片岩 Sb(風化部は wSb)は、風化部も含め全般に N値 50以上を示しており、比較的新鮮堅硬な CM 級岩盤では換算 N値 300以上を示す。なお、BNo.4 孔の着岩部(6m)では N値 50 に満たないものの 48 と 50 とほぼ同等の値を示している。

なお、既往調査(H29)の地質区分に関し、基盤岩の片岩はN値50未満を「風化片岩(wSb)」、N値50以上を「片岩(Sb)」と区分しているが、地質構成表によると wSb は「風化土層(礫まじり砂質シルト状)」、Sb でも「軟岩 I層(シルト質砂礫状片状コア、棒状コア)」とあり、既往調査の岩盤区分は性状のバラツキが懸念される。

そこで本調査では、既往調査の試験値を比較するにあたり、採取・観察したコアの性状を踏ま え、N値50以上でも風化の著しいもの(D級ないしCL級)を「風化片岩(wSb)」、風化がほとん どみられないもの(CM級)と区分し、本調査の標準貫入試験結果も勘案し、目安として wSb は換 算N値300 未満、Sb は換算N値300程度、と改めて区分した。

年		业民民人		シムー府	5	分布層厚(m	ı)	ATE	左∋田
代	Ţ	也僧区分	記号	土な土質	B·No.1	B·No.2	B·No.3	₩個	巴調
現世	盛	土 層	В	コンクリート 砂礫 礫混り砂質粘土	3.20	1.90	1.20	1~3	緑灰、暗褐 暗灰褐、灰 暗褐灰
中	片	風化土層	WSb	礫混り砂質シルト状	-	0.60	_	39	緑灰
生代	岩層	軟岩I層	Sb	シルト質砂礫状 片状コア、棒状コア	2.89	3.61	2.90	60 以上	緑灰、淡灰 暗灰褐

表 4.2(1) 既往調査の「地質構成表」(既往 H29 地質調査報告書より抜粋)

同じ区分でも性状のバラツキが懸念される

表-4.2(2) 標準貫入試験結果(本調査)

R2-BNo.1	(曝気槽棟	 北東) 							98.689	m			
	深度(m)		中点標高	打撃回数	貫入量	換算N値	換算N値	換算N値	地層区分	平均N值	標準偏差	平均N值	標準偏差
上端	下端	中点	(EL.m)	(回)	(cm)		(50補正)	(300補正)		(50補正)	(50補正)の	(300補正)	(300補正)の
1.15	1.45	1.30	97.39	5	30	5	5	5	В				
2.15	2.45	2.30	96.39	4	30	4	4	4	В				
3.15	3.45	3.30	95.39	4	30	4	4	4	В	4.3	0.6	4.3	0.6
4.15	4.45	4.30	94.39	5	30	5	5	5	Ac				
5.15	5.45	5.30	93.39	2	30	2	2	2	Ac				
6.15	6.45	6.30	92.39	2	30	2	2	2	Ac	3.0	1.7	3.0	1.7
7.15	7.45	7.30	91.39	22	30	22	22	22	Dg(浅)				
8.15	8.45	8.30	90.39	32	30	32	32	32	Dg(浅)	27.0	7.1	27.0	7.1
9.00	9.09	9.05	89.64	50	9	167	50	167	Dg(深)				
10.00	10.08	10.04	88.65	50	8	188	50	188	Dg(深)				
11.15	11.28	11.22	87.47	50	13	115	50	115	Dg(深)				
12.15	12.29	12.22	86.47	50	14	107	50	107	Dg(深)				
13.15	13.28	13.22	85.47	50	13	115	50	115	Dg(深)				
14.15	14.35	14.25	84.44	50	20	75	50	75	Dg(深)	50.0	0.0	127.8	41.5
15.15	15.19	15.17	83.52	50	4	375	50	300	wSb	50.0	-	300.0	-

R2-BNo.2	(曝気槽棟	·南東)							98.674	m			
	深度(m)		中点標高	打撃回数	貫入量	換算N値	換算N値	換算N値	地層区分	平均N值	標準偏差	平均N值	標準偏差
上端	下端	中点	(EL.m)	(回)	(cm)		(50補正)	(300補正)		(50補正)	(50補正)の	(300補正)	(300補正)の
1.15	1.45	1.30	97.37	3	30	3	3	3	В	3.0	-	3.0	-
2.15	2.45	2.30	96.37	9	30	9	9	9	Ac	9.0	-	9.0	-
3.15	3.45	3.30	95.37	46	30	46	46	46	Dg(浅)				
4.15	4.45	4.30	94.37	42	30	42	42	42	Dg(浅)				
5.15	5.45	5.30	93.37	45	30	45	45	45	Dg(浅)				
6.15	6.45	6.30	92.37	49	30	49	49	49	Dg(浅)				
7.15	7.45	7.30	91.37	26	30	26	26	26	Dg(浅)				
8.15	8.45	8.30	90.37	34	30	34	34	34	Dg(浅)	40.3	8.7	40.3	8.7
9.15	9.44	9.30	89.38	50	29	52	50	52	Dg(深)				
10.00	10.05	10.03	88.65	50	5	300	50	300	Dg(深)	50.0	0.0	175.9	175.6
11.00	11.00	11.00	87.67	50	0	(∞)	50	300	Sb				
12.00	12.00	12.00	86.67	50	0	(∞)	50	300	Sb				
13.00	13.00	13.00	85.67	50	0	(∞)	50	300	Sb				
14.00	14.00	14.00	84.67	50	0	(∞)	50	300	Sb	50.0	0.0	300.0	0.0

R2-BNo.3	(曝気槽棟	・南西)							98.649	m			
	深度(m)		中点標高	打撃回数	貫入量	換算N値	換算N値	換算N値	地層区分	平均N值	標準偏差	平均N值	標準偏差
上端	下端	中点	(EL.m)	(回)	(cm)		(50補正)	(300補正)		(50補正)	(50補正)の	(300補正)	(300補正)の
1.15	1.45	1.30	97.35	16	30	16	16	16	В	16.0	-	16.0	-
2.15	2.45	2.30	96.35	23	30	23	23	23	Dg(浅)				
3.15	3.45	3.30	95.35	31	30	31	31	31	Dg(浅)	27.0	5.7	27.0	5.7
4.15	4.34	4.25	94.40	50	19	79	50	79	wSb				
5.15	5.25	5.20	93.45	50	10	150	50	150	wSb				
6.15	6.28	6.22	92.43	50	13	115	50	115	wSb				
7.00	7.10	7.05	91.60	50	10	150	50	150	wSb	50.0	0.0	123.6	33.9

0) 1	02	03	04	05	0	50	100	15	0 20	0 25	50 30	00
0		0-											
			0				1.						⊢
				F		<u>} </u>	+	┝					<u> </u>
5						55	[) 			
					0	Ş)			
		, 深度~	, ·N値(, N値0~	~50)		50	R度·	~NÍ	直(Nf	L 直50~	- 300)	,

R2-BN	No.4(曝	気槽棟	•北西)							98.801	m				
	深	度(m)		中点標高	打撃回数	貫入量	換算N値	換算N値	換算N値	地層区分	平均N値	標準偏差	平均N値	標準偏差	
上站		下端	中点	(EL.m)	(回)	(cm)		(50補正)	(300補正)		(50補正)	(50補正)の	(300補正)	(300補正)σ	
1.	.23	1.53	1.38	97.42	7	30	7	7	7	В					i i
2.	.15	2.45	2.30	96.50	8	30	8	8	8	В					
3.	.15	3.45	3.30	95.50	27	30	27	27	27	В					
4.	.15	4.45	4.30	94.50	6	30	6	6	6	В					
5.	.15	5.45	5.30	93.50	5	30	5	5	5	В	10.6	9.2	10.6	9.2	
6.	.15	6.45	6.30	92.50	48	30	48	48	48	wSb					i —
7.	.00	7.07	7.04	91.77	50	7	214	50	214	wSb					
8.	.00	8.08	8.04	90.76	50	8	188	50	188	wSb	49.3	1.2	149.9	89.3	
9.	.00	9.05	9.03	89.78	50	5	300	50	300	Sb	50.0	-	300.0	-	10

:N値50以上につき「50」と丸めた箇所 :N値300以上につき「300」と丸めた箇所 :礫あたり等、異常値と判断し除外した箇所

表-4.2(3) 地層ごと平均N値および標準偏差一覧(本調査)

	深度(m)		打撃回数	貫入量	換算N値	換算N値	換算N値	地層区分	平均N值	標準偏差	平均N値	標準偏差
上端	下端	中点	(回)	(cm)		(50補正)	(300補正)		(50補正)	(50補正)σ	(300補正)	(300補正)の
1.15	1.45	1.30	5	30	5	5	5	В				
2.15	2.45	2.30	4	30	4	4	4	В				
3.15	3.45	3.30	4	30	4	4	4	В				
1.15	1.45	1.30	3	30	3	3	3	В				
1.15	1.45	1.30	16	30	16	16	16	В				
1.23	1.53	1.38	7	30	7	7	7	В				
2.15	2.45	2.30	8	30	8	8	8	В				
3.15	3.45	3.30	27	30	27	27	27	В				
4.15	4.45	4.30	6	30	6	6	6	В				
5.15	5.45	5.30	5	30	5	5	5	В	8.5	7.5	8.5	7.5
4.15	4.45	4.30	5	30	5	5	5	Ac				
5.15	5.45	5.30	2	30	2	2	2	Ac				
6.15	6.45	6.30	2	30	2	2	2	Ac				
2.15	2.45	2.30	9	30	9	9	9	Ac	4.5	3.3	4.5	3.3
7.15	7.45	7.30	22	30	22	22	22	Dg(浅)				
8.15	8.45	8.30	32	30	32	32	32	Dg(浅)				
3.15	3.45	3.30	46	30	46	46	46	Dg(浅)				
4.15	4.45	4.30	42	30	42	42	42	Dg(浅)				
5.15	5.45	5.30	45	30	45	45	45	Dg(浅)				
6.15	6.45	6.30	49	30	49	49	49	Dg(浅)				
7.15	7.45	7.30	26	30	26	26	26	Dg(浅)				
8.15	8.45	8.30	34	30	34	34	34	Dg(浅)				
2.15	2.45	2.30	23	30	23	23	23	Dg(浅)				
3.15	3.45	3.30	31	30	31	31	31	Dg(浅)	35.0	9.9	35.0	9.9
9.00	9.09	9.05	50	9	167	50	167	Dg(深)				
10.00	10.08	10.04	50	8	188	50	188	Dg(深)				
11.15	11.28	11.22	50	13	115	50	115	Dg(深)				
12.15	12.29	12.22	50	14	107	50	107	Dg(深)				
13.15	13.28	13.22	50	13	115	50	115	Dg(深)				
14.15	14.35	14.25	50	20	75	50	75	Dg(深)				
9.15	9.44	9.30	50	29	52	50	52	Dg(深)				
10.00	10.05	10.03	50	5	300	50	300	Dg(深)	50.0	0.0	139.9	78.3
15.15	15.19	15.17	50	4	375	50	300	wSb				
4.15	4.34	4.25	50	19	79	50	79	wSb				
5.15	5.25	5.20	50	10	150	50	150	wSb				
6.15	6.28	6.22	50	13	115	50	115	wSb				
7.00	7.10	7.05	50	10	150	50	150	wSb				
6.15	6.45	6.30	48	30	48	48	48	wSb				
7.00	7.07	7.04	50	7	214	50	214	wSb				
8.00	8.08	8.04	50	8	188	50	188	wSb	49.8	0.7	155.5	79.7
11.00	11.00	11.00	50	0	(∞)	50	300	Sb				
12.00	12.00	12.00	50	0	(∞)	50	300	Sb				
13.00	13.00	13.00	50	0	(∞)	50	300	Sb				
14.00	14.00	14.00	50	0	(∞)	50	300	Sb				
9.00	9.05	9.03	50	5	300	50	300	Sb	50.0	0.0	300.0	0.0

:N値50以上につき「50」と丸めた箇所 :N値300以上につき「300」と丸めた箇所

:礫あたり等、異常値と判断し除外した箇所

表-4.2(4) 地質ごと平均 № 値・標準偏差(本調査)

N值50以上補正

地層区分	平均N值	標準偏差	個数
В	8.5	7.5	10.0
Ac	4.5	3.3	4.0
Dg(浅)	35.0	9.9	10.0
Dg(深)	50.0	0.0	8.0
wSb	49.8	0.7	8.0
Sb	50.0	0.0	5.0

N值300以上補	Е		
地層区分	平均N值	標準偏差	個数
В	8.5	7.5	10.0
Ac	4.5	3.3	4.0
Dg(浅)	35.0	9.9	10.0
Dg(深)	139.9	78.3	8.0
wSb	155.5	79.7	8.0
Sb	300.0	0.0	5.0

N 値 50 以上補正

図-4.2(2) 地質ごとN値ヒストグラム(本調査)

図-4.2(3) 地質ごと標準偏差ヒストグラム(本調査)

図-4.2(4) 地質ごと個数ヒストグラム(本調査)

表-4.2(5) 標準貫入試験結果(既往 H29 調査)

100.00 ---

H29-BNo.1	1(乾燥焼去	□棟・北西)							102.24	m			
	深度(m)		中点標高	打撃回数	貫入量	換算N値	換算N値	換算N値	地層区分	平均N值	標準偏差	平均N值	標準偏差
上端	下端	中点	(EL.m)	(回)	(cm)		(50補正)	(300補正)		(50補正)	(50補正)の	(300補正)	(300補正)の
1.15	1.45	1.30	100.94	2	30	2	2	2	В				
2.15	2.55	2.35	99.89	1	40	1	1	1	В	1.4	0.9	1.4	0.9
3.15	3.44	3.30	98.95	60	29	62	50	62	wSb				
4.15	4.24	4.20	98.05	60	9	200	50	200	wSb	50.0	0.0	131.0	97.5
5.05	5.10	5.08	97.17	60	5	360	50	300	Sb				
6.05	6.09	6.07	96.17	60	4	450	50	300	Sb	50.0	0.0	300.0	0.0

H29-BNo.2(乾燥焼却棟・北東)

TZ9-DINO.	2(早乙)床)光五	川保・北宋/							102.23	m			
	深度(m)		中点標高	打撃回数	貫入量	換算N値	換算N値	換算N値	地層区分	平均N值	標準偏差	平均N值	標準偏差
上端	下端	中点	(EL.m)	(回)	(cm)		(50補正)	(300補正)		(50補正)	(50補正)の	(300補正)	(300補正)の
1.15	1.45	1.30	100.93	3	30	3	3	3	В	3.0	25.5	3.0	-
2.15	2.45	2.30	99.93	39	30	39	39	39	wSb				
3.15	3.40	3.28	98.96	60	25	72	50	72	wSb				
4.15	4.28	4.22	98.02	60	13	138	50	138	wSb				
5.05	5.13	5.09	97.14	60	8	225	50	225	wSb	47.3	5.5	118.6	82.1
6.05	6.11	6.08	96.15	60	6	300	50	300	Sh	50.0	_	300.0	_

0	0 1	02	0 3	0 4	0 50)	50	10	0 15	50 20	0 25	;0	300	
0	0					Ŭ							-	
				с С	c)	- 7	5-					-	
5					d)) 5			0-					
	深	度~N	 値(Nf	直0~5	C 0)) 		深度	€∼NÍ	直(N値	i50∼3	(00)	9	٦

H29-BNo.3	3(乾燥焼去	巾棟・南東)							102.46	m					深	.度~N
	深度(m) 中点標高 打撃回数 貫入						換算N値	換算N値	地層区分	平均N值	標準偏差	平均N値	標準偏差		0 1	10 2
上端	下端	中点	(EL.m)	(回)	(cm)		(50補正)	(300補正)		(50補正)	(50補正)の	(300補正)	(300補正)の	0		_
1.15	1.44	1.30	100.94	60	29	62	50	62	wSb	50.0	0.0	62.1	-			
2.05	2.11	2.08	100.15	60	6	300	50	300	Sb							
3.05	3.12	3.09	99.15	60	7	257	50	257	Sb							1
4.05	4.10	4.08	98.16	60	5	360	50	300	Sb	50.0	0.0	285.7	24.7			

表-4.2(6) 地層ごと平均 N 値および標準偏差一覧(既往 H29 調査)

	深度(m)		打撃回数	貫入量	換算N値	換算N値	換算N値	地層区分	平均N值	標準偏差	平均N值	標準偏差
上端	下端	中点	(回)	(cm)		(50補正)	(300補正)		(50補正)	(50補正)の	(300補正)	(300補正)の
1.15	1.45	1.30	2	30	2	2	2	В				
2.15	2.55	2.35	1	40	1	1	1	В				
1.15	1.45	1.30	3	30	3	3	3	В	1.9	1.1	1.9	1.1
2.15	2.45	2.30	39	30	39	39	39	wSb				
3.15	3.44	3.30	60	29	62	50	62	wSb				
4.15	4.24	4.20	60	9	200	50	200	wSb				
3.15	3.40	3.28	60	25	72	50	72	wSb				
4.15	4.28	4.22	60	13	138	50	138	wSb				
5.05	5.13	5.09	60	8	225	50	225	wSb				
1.15	1.44	1.30	60	29	62	50	62	wSb	48.4	4.2	114.1	74.3
5.05	5.10	5.08	60	5	360	50	300	Sb				
6.05	6.09	6.07	60	4	450	50	300	Sb				
6.05	6.11	6.08	60	6	300	50	300	Sb				
2.05	2.11	2.08	60	6	300	50	300	Sb				
3.05	3.12	3.09	60	7	257	50	257	Sb				
4.05	4.10	4.08	60	5	360	50	300	Sb	50.0	0.0	292.9	17.5

図-4.2(5) 深度とN値の関係(地質毎色分け)(既往 H29 調査)

表-4.2(7) 地質ごと平均N値・標準偏差(既往H29調査)

N值50以上補正

地層区分	平均N值	標準偏差	個数
В	1.9	1.1	3.0
wSb	48.4	4.2	7.0
Sb	50.0	0.0	6.0

N值300以上補	正		
地層区分	平均N值	標準偏差	個数
В	1.9	1.1	3.0
wSb	114.1	74.3	7.0
Sb	292.9	17.5	6.0

図-4.2(6) 地質ごとN値ヒストグラム(既往 H29 調査)

図-4.2(8) 地質ごと個数ヒストグラム(既往 H29 調査)

4.3 原位置·室内試験計画

ボーリングコア観察結果および標準貫入試験結果をもとに、原位置試験および室内試験の計画を立案した。

原位置試験は、地盤の変形特性把握を目的に、コアリング孔とは別に試験孔(別孔)を削孔して「孔内水平載荷試験」を実施した。

室内試験は、地盤の物理特性(粒度特性等)把握を目的に、標準貫入試験試料を用いて「粒度 試験」等の物理試験を実施した。

孔内水平載荷試験は、基礎地盤浅部となる「盛土層(B)」「沖積粘土層(Ac)」を対象とし、これら地質の堆積(盛立)厚が厚いと考えられる、斜面下方の2孔(R2-BNo.1、4)で実施した。

一方、室内試験は、基礎地盤のうち未固結堆積物である「盛土層(B)」「沖積粘土層(Ac)」「洪 積礫層(Dg)」を対象とし、調査地広範の土質のバラツキ程度を把握できるよう、全4孔から地質 ごと1~2 試料を代表として抽出した。

図-4.3(1) 試験実施位置平面図

図-4.3(1) 試験実施位置断面図

2影9.5m)
0 m
国道192号
В
土質試験試料位置孔内水平載荷試験位置
4
^m 9.05 ^m
国道192号
В
Ac

表-4.3(1) 孔ごと原位置および室内試験計画一覧(本調査)

		5	元由			N/#		貫入	、試験		71 m	別孔	= -1 ₩1	試彩	区間		土質	質試験(物	7理)		
箇所	孔名	(≮皮 (m)	地質区分	※ 50	N1但 以上は「50」に丸め	粘土	土砂	玉石	軟岩	載荷	深度 孔径	≣ц⊼¥ No.	上端 (m)	下端 (m)	土粒子 密度	含水比	粒度 (粘土)	液性	塑性	
曝気槽棟·北	東 R2BNo	.1	1	В	5	1		1													
			2	В	4	•		1					B-1-2	2.15	2.45	1	1	1			乱した試料にてBの粗粒土装
			3	В	4	•		1													
			4	Ac	5	+	1														
			5	Ac	2	4	1				1	6.0	B-1-5	5.15	5.45	1	1	1	1	1	乱した試料にてAcの細粒土
			6	Ac	2		1					φ86									
			7	Dg(浅)	22			1					B-1-7	7.15	7.45	1	1	1			乱した試料にてDg(浅部)の
			8	Dg(浅)	32				1												
			9	Dg(深)	50			1													
			10	Dg(深)	50			1													
			11	Dg(深)	50			1													
			12	Dg(深)	50			1													
			13	Dg(深)	50			1													
			14	Dg(深)	50			1													
			15	wSb	50					1											
				小計		15	3	10	1	1	1					3	3	3	1	1	

		灾由			NG		貫入	.試験		고ҧ	別孔	<u>≣</u> # ¥3	試料	区間		土質	賃試験(物]理)		
箇所	孔名	/未度 (m)	地質区分	※ 50	N1但 以上は「50」に丸め	粘土	土砂	玉石	軟岩	載荷	深度 孔径	no.	上端 (m)	下端 (m)	土粒子 密度	含水比	粒度 (粘土)	液性	塑性	
曝気槽棟·南東	R2BNo.2	1	В	3		1						B-2-1	1.15	1.45	1	1	1	1	1	乱した試料にてAcの細粒土
		2	Ac	9		1														
		3	Dg(浅)	46			1													
		4	Dg(浅)	42	•			1												
		5	Dg(浅)	45			1													
		6	Dg(浅)	49			1													
		7	Dg(浅)	26			1					B-2-7	7.15	7.45	1	1	1			乱した試料にてDg(浅部)の
		8	Dg(浅)	34			1													
		9	Dg(深)	50			1													
		10	Dg(深)	50				1												
		11	Sb	50					1											
		12	Sb	50					1											
		13	Sb	50					1											
		14	Sb	50					1											
			小計		14	2	6	2	4	0					2	2	2	1	1	

		灾由					貫入	、試験		71 m	別孔	= _1 ¥3	試料	区間		土質	賃試験(物	理)		
箇所	孔名	/未及 (m)	地質区分	※ 50	N1但 以上は「50」に丸め	粘土	土砂	玉石	軟岩	載荷	深度 孔径	no.	上端 (m)	下端 (m)	土粒子 密度	含水比		液性	塑性	
曝気槽棟·南西	R2BNo.3	1	В	16			1					B-3-1	1.15	1.45	1	1	1			乱した試料にてBの粗粒土対
		2	Dg(浅)	23				1				B-3-2	2.15	2.45	1	1	1			乱した試料にてDg(浅部)の
		3	Dg(浅)	31			1													
		4	wSb	50					1											
		5	wSb	50					1											
		6	wSb	50					1											
		7	wSb	50					1											
			小計		7	0	2	1	4	0					2	2	2	0	0	

		须由					貫入	、試験		긴 마	別孔	= _1 ¥3	試彩	区間		土質	賃試験(物]理)		
箇所	孔名	/未度 (m)	地質区分	※ 50	N1但 以上は「50」に丸め	粘土	土砂	玉石	軟岩	載荷	深度 孔径	no.	上端 (m)	下端 (m)	土粒子 密度	含水比	粒度 (粘土)	液性	塑性	
曝気槽棟·北西	R2BNo.4	1	В	7	1		1				2.1									
		2	В	8			1			1	φ86	B-4-2	2.15	2.45	1	1	1			乱した試料にてBの粗粒土対
		3	В	27			1													
		4	В	6			1													
		5	В	5			1					B-4-5	5.15	5.45	1	1	1			乱した試料にてBの粗粒土対
		6	wSb	48					1											
		7	wSb	50					1											
		8	wSb	50					1											
		9	Sb	50					1											
			小計		9	0	5	0	4	1					2	2	2	0	0	

	:盛土(礫)
	:沖積層(粘土)※泥流
ŧ)	:洪積層(浅部)※N値50未満
R)	:洪積層(深部)※N値50以上
)	:片岩(風化)
	:片岩

· Л 石
備考
1象の物理一式。
対象の物理一式(孔内載荷試験値との比較も)。
粗粒土対象の物理一式。
備考
対象の物理一式。
粗粒土対象の物理一式。
備老
010 · J
は象の物理一式。
粗粒土対象の物理一式。
備考
1象の物理一式。
象の物理一式。

4.4 孔内水平載荷試験(LLT)

孔内水平載荷試験の結果を図-4.4(1)~(2)に示す。

試験は、計画構造物の直下に広がる盛土層 B および沖積粘土 Ac を対象とし、盛土層と沖積層が 最も厚いと想定される斜面下流側の2孔(R2-BNo.1・4)にて、地層ごとにそれぞれ一回実施した。

試験の結果、R2-BNo.4 孔の盛土層(砂混じりシルト質礫)の変形係数は 1820kN/m²、R2-BNo.1 孔の 沖積層(礫混じりシルト)の変形係数は 665kN/m²と推定された。

<u> L L T 試験結果図</u>

調査件名	汚泥再生処理センター建設に係る調査計画及び発注支援等業務									
測定 No.	R2-BNo. 1									
深度	GL- 5.70m									
地質名	シルト質粘土 (Ac)									
N 值	2									

静止土圧 P 0	降伏圧 Py	破壊圧 PI	地盤係数 K	変形係数 E	K値を求めた 中 間 半 径
(kN/m^2)	(kN/m²)	(kN/m^2)	(kN/m³)	(kN/m²)	r m (m)
22	15	44	10700	665	0.0478
⊿H (cm)					

図-4.4(1) 孔内水平載荷試験結果(R2-BNo.1孔)

<u> L L T 試験結果図</u>

調査件名	汚泥再生処理センター建設に係る調査計画及び発注支援等業務
測定 No.	R2-Bno. 4
深度	GL- 1.80m
地 質 名	砂質シルト (B)
N 值	7

試 験 地 の 地 質 状 況 並 び に 試験時の状況

図-4.4(2) 孔内水平載荷試験結果(R2-BNo.4孔)

4.5 室内土質試験結果

試料の抽出条件は、以下のとおりとした。

- 地盤浅部の盛土層 B、および自然地盤の未固結堆積層である沖積粘土層 Ac、洪積礫層 Dg を対象とし、代表 1~2 試料程度抽出した。ただし、Dg は液状化検討等の活用も考慮し、N 値 50 以下となる箇所に限定した。
- ② なお、孔内載荷試験を実施した孔の同深度では優先的に抽出し、変形特性と物理特性と の関係を比較できるようにした。

試験の結果一覧を表-4.5(1)に示す。

表-4.5(1) 室内土質試験結果一覧(主要結果抜粋)

		孔口		半国	上端	下端	中間	中間		土粒子	自然	粒度組成						液性	塑性	塑性	D20換算
箇所	孔名	標高	試料番号	12月	深度	深度	深度	標高	N値	密度	含水比	最大	礫分	砂分	細粒分	分類名	分類記号	限界	限界	指数	透水係数
		(T.P.m)			(m)	(m)	(m)	(T.P.m)		(g/cm3)	(%)	粒径	000					WL(%)	WP(%)	IP	(cm/s)🔆
曝気槽棟·北東		98.689	B-1-2	В	2.15	2.45	2.30	96.39	4	2.755	14.2	19	39.1	32.6	28.3	細粒分質砂質礫	GFS	-	-	-	1.15E-05
	R2-BNo.1		B-1-5	Ac	5.15	5.45	5.30	93.39	2	2.871	27.2	19	11.6	28.0	60.4	礫まじり砂質粘土(低液性限界)	CLS-G	35.8	19.3	16.5	-
			B-1-7	Dg(浅)	7.15	7.45	7.30	91.39	22	2.929	13.8	19	43.2	33.0	23.8	細粒分質砂質礫	GFS	-	-	-	8.42E-05
曝気槽棟·南東	D9 DN- 9	98.674	B-2-1	В	1.15	1.45	1.30	97.37	3	2.780	19.8	19	38.7	27.3	34.0	細粒分質砂質礫	GFS	38.9	23.6	15.3	7.30E-06
	KZ-BINO.Z		B-2-7	Dg(浅)	7.15	7.45	7.30	91.37	26	2.760	12.6	19	28.2	40.5	31.3	細粒分質礫質砂	SFG	-	-	-	1.42E-05
曝気槽棟·南西		98.649	B-3-1	В	1.15	1.45	1.30	97.35	16	2.726	10.5	19	37.9	38.3	23.8	細粒分質礫質砂	SFG	-	-	-	1.17E-04
	KZ-BINO.3		B-3-2	Dg(浅)	2.15	2.45	2.30	96.35	23	2.716	13.3	19	30.2	38.4	31.4	細粒分質礫質砂	SFG	-	-	_	1.73E-05
曝気槽棟·北西	DO DN 4	98.801	B-4-2	В	2.15	2.45	2.30	96.50	8	2.718	9.3	19	52.3	28.4	19.3	細粒分質砂質礫	GFS	-	-	-	1.42E-03
	K2-BNo.4		B-4-5	В	5.15	5.45	5.30	93.50	5	2.734	13.3	19	50.9	31.8	17.3	細粒分質砂質礫	GFS	-	-	-	2.86E-03

図-4.5(1) 室内試験・各試験値と深度との関係(土粒子密度・自然含水比)およびコンシステンシー曲線 ※地質ごと色分け

%k=0.344**∗**(D20².295)
粒度特性

表-4.5(2) 室内土質試験結果一覧(粒度試験)

											<u>1</u>				11/1 3	-C (12/2									
	孔名		支	中間									粘	医組成								长达	手令		
箇所	孔名	試料番号	^{地層} 区分	深度 (m)	最大 粒径	粗礫	中礫	細礫	礫分	粗砂	中砂	細砂	砂分	シルト 分	粘土分	細粒分	D60	D50	D30	D20	D10	均 寺 係数	^{田平} 係数	分類名	分類記号
		B-1-2	В	2.30	19	0.0	27.4	11.7	39.1	11.4	12.6	8.6	32.6	13.8	14.5	28.3	1.8761	0.8841	0.1060	0.0112	0.0017	1103.59	3.52	細粒分質砂質礫	GFS
曝気槽棟·北東	R2-BNo.1	B-1-5	Ac	5.30	19	0.0	7.4	4.2	11.6	4.2	8.5	15.3	28.0	33.5	26.9	60.4	0.0730	0.0340	0.0067	-	-	-	-	礫まじり砂質粘土(低液性限界)	CLS-G
		B-1-7	Dg(浅)	7.30	19	0.0	27.8	15.4	43.2	10.8	13.1	9.1	33.0	13.5	10.3	23.8	2.4633	1.2002	0.1782	0.0267	0.0047	524.11	2.74	細粒分質砂質礫	GFS
喝气博博, 声声	D9 DN- 9	B-2-1	В	1.30	19	0.0	32.8	5.9	38.7	6.5	10.2	10.6	27.3	18.0	16.0	34.0	1.6942	0.4624	0.0421	0.0092	0.0010	1694.20	1.05	細粒分質砂質礫	GFS
嗪 式 慴 悚• 闬 束	RZ-DINO.Z	B-2-7	Dg(浅)	7.30	19	0.0	15.2	13.0	28.2	11.8	15.3	13.4	40.5	17.0	14.3	31.3	0.8500	0.3931	0.0642	0.0123	0.0022	386.36	2.20	細粒分質礫質砂	SFG
喝气博博, 古西	D9 DN- 9	B-3-1	В	1.30	19	0.0	24.2	13.7	37.9	12.4	14.5	11.4	38.3	12.1	11.7	23.8	1.7497	0.8698	0.1493	0.0308	0.0028	624.89	4.55	細粒分質礫質砂	SFG
喙 XU 曾 尔 · 用 四	NZ-DIN0.3	B-3-2	Dg(浅)	2.30	19	0.0	17.0	13.2	30.2	12.7	14.5	11.2	38.4	16.8	14.6	31.4	1.0412	0.5006	0.0615	0.0134	0.0015	694.13	2.42	細粒分質礫質砂	SFG
曝気槽棟·北西 R	D9 DN- 4	B-4-2	В	2.30	19	0.0	31.9	20.4	52.3	11.4	10.2	6.8	28.4	9.7	9.6	19.3	3.5047	2.2571	0.4250	0.0913	0.0058	604.26	8.89	細粒分質砂質礫	GFS
	KZ-BN0.4	B-4-5	В	5.30	19	0.0	32.6	18.3	50.9	12.6	11.5	7.7	31.8	8.0	9.3	17.3	3.4335	2.1008	0.4545	0.1240	0.0066	520.23	9.12	細粒分質砂質礫	GFS

図-4.5(2) 粒度曲線 ※地質ごと色分け

第5章 総合解析とりまとめ

5.1 調査地周辺の地形・地質の検討

(1) 調査地周辺の地質構成

今回の調査で確認した三波川結晶片岩類、地すべり及び崖錐堆積物、沖積層と、現生の盛土 について、性状を以下で述べる。

1) 三波川結晶片岩類(記号:Sb、片岩、平均N值50以上)

三波川結晶片岩類の中で、点紋を含む泥質片岩・珪質片岩を主体とし、稀に厚さ 0.5cm 以下の褐色粘土を割れ目に挟む。風化はあまり受けておらず、主な岩級細区分は CM 級(BIIIb)である。

三波川結晶片岩類(記号:wSb、風化片岩、平均N値49.8)
 三波川結晶片岩類のうち、点紋を含む泥質片岩を主体とし、割れ目に0.5~2cmの褐色粘土
 を挟む。風化しており、ボロボロと崩れやすい。主な岩級細区分はCL級(CⅢc)である。

3) 洪積層(深部)(記号:Dg(深)、シルト質礫、平均N値139.9)

礫種は泥質・緑色片岩を主体とし、礫径は ϕ 0.5~4cmの角礫主体である。 ϕ 7.5cm以上の玉石も多く含み、中には ϕ 40cm以上のものも見られる。基質は褐色のシルトであり、締りは良好である。

4) 洪積層(浅部)(記号:Dg(浅)、シルト質礫、平均N値35.0)

Dg(深)と同様、礫種は泥質・緑色片岩を主体とし、礫径は ϕ 0.5~4cmの角礫主体である。 ϕ 7.5cm以上の玉石も多く含み、中には ϕ 40cm以上のものも見られる。基質は褐色のシルトであり、下位のDg(深)より締りは緩い。

5) 沖積層(記号:Ac、砂礫混じり粘土、平均N値7.4) R2-BNo.3 孔を除く3 孔で見られ、暗灰色もしくは暗緑色の軟質な粘土で構成される。細~中 粒砂や細礫を含む。指圧で容易にへこむ。

6) 盛土層(記号:B、砂混じりシルト質礫、平均N値9.1)

 $\phi 0.5 \sim 2 \text{cm}$ の角礫主体で、最大礫径は $\phi 20 \text{cm}$ 。アスファルトやコンクリート片を含む。基質 は褐色のシルトであり、指圧で容易にへこむ。

(2) 地質断面図と地質コンター図

本調査では、図-5.1(1)に示す3本の断面測線で谷方向に沿う縦断図と谷を横切る横断図を 作成した。なお、各断面図には不圧地下水位を記載した。

図-5.1(2)・(3)の縦断図より、下流に向かって洪積層の Dg(浅)・Dg(深)が厚く堆積し、図-5.1(4)の横断図からは、かつての谷を埋めるように洪積層の Dg(浅)・Dg(深)が堆積している ことが明らかになった。

また、各層の上面もしくは下面が地下でどのように分布しているかを表すコンター図を図 -5.1(5)~(7)に示す。

表-5.1(1) 調査地周辺の地質層序

地質	[年代	地層區	区分	記号	土質区分	色調	記事	N値	
	現生	盛土層	礫	В	砂混じりシルト質礫	灰褐	¢0.5~2cmの角礫主体で、最大礫径は¢20cm。 アスファルトやコンクリート片を含む。	3~27	1.50
		油種屋	粘土	Ac	砂礫混じり粘土	暗灰	礫分はφ0.2~0.5cm主体で、最大礫径φ2cm。植 物片を含む。	2~9	1.50
第四紀	更新世中−後期	冲恨 眉	礫	Ag	Ag 砂礫		崖錐堆積物。ボーリングでは未確認につき、性状 は不明確。	_	
	~完新世	进建屋	礫	Dg(浅)	シルト質礫	褐	礫分はφ0.2~3cmの角礫主体で、最大礫径φ 80cm。礫種は緑色片岩や泥質片岩主体。基質は	22~49	
		六 恨盾	礫	Dg(深)	シルト質礫	褐	褐色のシルトが主体で、Dg(浅)はしまりがやや不 良で、Dg(深)は良好である。	50	13,28
		- :# 114+	日下市	wSb	CL級(C~DⅢc)	暗灰~ 淡褐	ハンマーでたたくとボロボロに砕ける。長さ5cm程 度の片状コア。割れ目沿いに風化が見られる。割 れ目には0.2~0.5cm程度の褐色粘土を挟む。岩 級細区分は、CL級(C~DⅢc)	48~50	02.50
中生代	日亜和	二次川稻	⊞万石	Sb	СМ級(ВⅢЬ)	淡青灰~暗青灰	割れ目間隔は主に5~20cmで、割れ目には一部 0.1~1cmの褐色粘土を挟む。割れ目に沿って風 化はあまり見られない。割れ目に沿って風化はあ まり見られない。岩級細区分はCM級(BIIIb)。	50以上	12,00 50 / 0

図-5.1(1) 地質平面図および断面測線位置図

図-5.1(2) 地質断面図(断面線①)

図-5.1(3) 地質断面図(断面線②)

図-5.1(4) 地質断面図(断面線③)

図-5.1(6) 沖積粘土層(Ac)下面コンター図

図-5.1(7) 基盤岩(片岩)(Sb)上面コンター図

5.2 地質調査結果に基づく土質定数の設定

本調査対象箇所について、今回実施した原位置試験結果、室内試験結果をもとに、以下の土質定数について代表値を検討した。

<定数代表値のルール> 設定定数項目は「湿潤密度(単位体積重量)」「代表N値」「粘着力」「内部摩擦角」「変形係 数」「透水係数」とした。 設定定数値は原則として、①原位置試験値、②N値・粒度からの換算、③文献値(NEXCO の土質定数等より)の順で値を優先させ、定数代表値を設定した。

O 湿潤密度γt

湿潤密度 yt は、文献の値(表-5.2)を参考に設定した。岩盤は以下の式に基づき設定した。な お、本調査で岩盤の N 値は 300 以上であったが、後述のとおり代表 N 値は 300 に丸めて設定のた め、下式にて適用とした。

岩盤: γt=1.173+0.4×Log N (tf/m³) ×9.8 (kN/m³) (ただしN≦300)

O 代表N值

各地層での標準貫入試験結果からのN値をもとに、平均値を代表N値と設定した。

なお、岩盤の平均値はN値 300 以上であったが、安全に「300」と丸めた。また砂礫のうち Ag2 の平均値は 50 以上となるが、安全に「50」と丸めた。

〇 粘着力 c

粘着力は、N 値からの換算値、および文献値から推定した(ただし砂礫は 0)。各換算式は次の とおりである。なお、岩盤の換算値は「泥岩、凝灰岩、凝灰角礫岩」、岩盤の文献値は「ダムサイ ト・粘板岩」とした。

> 粘性土: c = 0.6 N (tf/m²) × 9.8 (kN/m²) 岩 盤: $c = 16.2 N^{0.606}$ (ただしN ≤ 300) ※「泥岩、凝灰岩、凝灰角礫岩」として

O 内部摩擦角 ϕ

内部摩擦角 φ は、N 値からの推定値(道路橋示方書N下部構造編に準拠)を設定値とした(た だし粘性土は0)。推定式は次のとおりである。砂・砂礫は、下記 2 パターンの換算式をそれぞれ 算出し、比較検討した。

なお、岩盤の換算値は「泥岩、凝灰岩、凝灰角礫岩」、岩盤の文献値は「ダムサイト・粘板岩」 とした。

砂・砂礫 (N
$$\geq$$
5): $\phi = \sqrt{15}$ N +15 (大崎 1959)

砂・砂礫 (N>5): ϕ = 4.8 lnN1+21 (°) (道示 2002) N1 = 170N/ σ 'v+70 σ ' v= $\gamma t_1hw + \gamma' t_2(x-hw)$

岩 盤: φ =0.888 LogN + 19.3 (ただしN≦300)
 ※「泥岩、凝灰岩、凝灰角礫岩」として

 ここで、N1: 有効上載圧 100kN/m² 相当に換算したN値
 N: 土層の平均N値
 σ'v: 有効上載圧 σ'v<50kN/m²の時は、σ'v=50kN/m² とする γt1: 地下水位上の単位体積重量(kN/m³)
 γ't2: 地下水位下の単位体積重量(kN/m³)
 hw: 地下水位深度(m)
 x: 計算地点までの深度(m)

O 変形係数 E

変形係数は、N値より求められる以下の式からの値を参考に設定した。

粘性土、砂、砂礫: E = 700 × N (kN/m²)(孔内載荷試験値換算) 2,800 × N (kN/m²)(地盤反力係数推定に用いる値)

… 地盤工学会より

岩盤 (ただしN≦300):27.1 × N^{0.69} (kgf/cm²) × 98.1 (kN/m²)

O 透水係数K

透水係数は前記のとおり、粒度試験で求められる 20%粒度(D₂₀)からの換算式(下式参照) により算出した。

 $K = 0.344 \times (D_{20}^{2.295})$

上記の検討の結果とりまとめた、土質定数代表値の一覧を表-5.2(5)に示す。

				1	· · · · · · · · · · · · · · · · · · ·		
				湿潤密度	せん断	粘着力	地盤工学会
	種 類		状 態	(t/m ³)	抵抗角	(kN/m^2)	基準
					(度)	$[tf/m^2]$	
	礫および	締固めたもの		2. 0	40	0[0]	$\{G\}$
	礫まじり砂						
盛	砂	締固めたもの	粒径幅の広いもの	2. 0	35	0[0]	{ S }
			分級されたもの	1. 9	30	0[0]	
土	砂質土	締固めたもの		1. 9	25	30[3]以下	{ S F }
	粘性土	締固めたもの		1. 8	15	50[5]以下	$\{m\}$, $\{C\}$
	関東ローム	締固めたもの		1. 4	20	10[1]以下	$\{\mathbf{V}\}$
	礫	密実なものまた	」は粒径幅の広いもの	2. 0	40	0[0]	$\{G\}$
		密実でないもの)または分級されたもの	1. 8	35	0[0]	
自	礫まじり砂	密実なもの		2. 1	40	0[0]	$\{G\}$
		密実でないもの)	1. 9	35	0[0]	
	砂	密実なものまた	上は粒径幅の広いもの	2. 0	35	0[0]	{ S }
然		密実でないもの)または分級されたもの	1. 8	30	0[0]	
	砂質土	密実なもの		1. 9	30	30[3]以下	{ S F }
tal.		密実でないもの)	1. 7	25	0[0]	
地	粘性土	固いもの(指て	ご強く押し多少へこむ)	1. 8	25	50[5]以下	$\{m\}$, $\{C\}$
		やや軟らかいも	の(指の中程度の力で貫入)	1. 7	20	30[3]以下	
成几		軟らかいもの	(指が容易に貫入)	1. 6	15	15[1.5]以下	
盕	粘土および	固いもの(指て	ご強く押し多少へこむ)	1. 7	20	50[5]以下	$\{m\}$, $\{C\}$
	シルト	やや軟らかいも	っの(指の中程度の力で貫入)	1. 6	15	30[3]以下	
		軟らかいもの	(指が容易に貫入)	1. 4	10	15[1.5]以下	
	関東ローム			1. 4	5(φu)	30[3]以下	{ V }

表-5.2(1) 土質定数

【注意事項】

(a) 地下水位下にある土の湿潤密度は、それぞれの表中の値から飽和土の場合は1.0を、不飽和土の場合は0.9 を差引いた値とする.

- を差引いた値とする.
 (b) 湿潤密度の値を決定する場合,次の点に注意すること.
 (4) 砕石は,礫と同じ値とする.
 (n) トンネルずりや岩塊などは,粒径や間隙により異なるので既往の実績や現場試験により決定する.
 (n) 礫混じり砂質土や礫混じり粘性土は,礫の混合割合および状態により適宜値を定める.
 (c) せん断抵抗角および粘着力の値は,圧密非排水せん断(CU)に対する概略的な値である.この場合,盛土に対する地下水,湧水などの影響は考慮していない.
 (d) 砕石,トンネルずり,岩塊などのせん断抵抗角および粘着力は,礫の値を用いてよい.
 (e) 粒度幅の広い土とは,さまざまな粒径の土粒子を適当な割合で含んだ土で締固めが行いやすい.分級された土とは,ある狭い範囲に粒径のそろった土で,密な締固めが行いにくいものをいう.
 (f) 粘性土,粘土およびシルトの区分でN値の目安は,おおむね次のとおりである. 固いもの(N=8~15),やや軟らかいもの(N=4~8),軟らかいもの(N=2~4)
 (g) 地質工学会基準の記号は、およその目安である.

- (g) 地質工学会基準の記号は、およその目安である.

nexco「設計要領 第一集」より

図−5.2(1) 砂の内部摩擦角 φ と N 値との関係

表-5.2(2)	岩盤における換算N値と各地盤定数との関係	(赤枠が該当)
----------	----------------------	---------

		砂岩·礫岩• 深成岩類	安山岩	泥岩•凝灰岩• 凝灰角礫岩	備考
単位体積重量 γt	(kN/m³)		γ =1.173+0.4LogI		岩盤全般に適用
粘着力 c	(kN/m²)	15.2N ^{0.327}	25.3N ^{0.334}	16.2N ^{0.606}	
せん断抵抗角 <i>ゆ</i> (内部摩擦角)	(°)	5.10LogN+29.3	6.82LogN+21.5	0.888LogN+19.3	
変形係数 E	(kN/m²)	I	$\Xi = 27.1 N^{0.69} \times 98.7$		岩盤全般に適用

		:	粘板岩(ダム	、サイトの例)		花崗岩(本四連絡橋基礎の例)					
岩	当 及	c(kN/m	12)	φ (°)	c(kN/m	12)	φ(°)			
		範囲	平均	範囲	平均	範囲	代表値	代表値			
	В	2250 ~ 2750	2500	40~50	45	1200~2500	1500	45			
硬 岩	сн	1750~2250	2000	35~45	40	1000~2000	1000	40			
	СМ	750 ~ 1750	1250	35~45	40	500 ~ 1000	500	40			
軟	CL	250 ~ 750	500	30~40	37	100~1000	100	37			
岩	岩 D	100以下 0		20~30	30~35	500以下	0	30 ~ 35			

表-5.2(3) せん断定数の設定例(赤枠が該当)

nexco「設計要領 第二集」より

表-5.2(4) 変形係数の測定例	(kN/m^2)	(赤枠が該当)

粘板岩(ダムサイトの	0例)	花崗岩(本四連絡橋基礎の例)						
範囲	平均	範囲	代表値					
3,000,000以上	* 3,000,000	1,200,000~3,000,000	2,000,000					
1,000,000~3,000,000	2,000,000	600,000~1,200,000	800,000					
500,000~1,000,000	750,000	300,000~600,000	450,000					
100,000~500,000	300,000	150,000~300,000	200,000					
100,000以下		5,000~150,000	10,000~100,000					
	粘板岩(ダムサイトの 範囲 3,000,000以上 1,000,000~3,000,000 500,000~1,000,000 100,000~500,000 100,000以下	粘板岩(ダムサイトの例) 範囲 平均 3,000,000以上 * 3,000,000 1,000,000~3,000,000 2,000,000 500,000~1,000,000 750,000 100,000~500,000 300,000 100,000以下	粘板岩(ダムサイト) 花崗岩(本四連絡橋基) 範囲 平均 範囲 3,000,000以上 * 3,000,000 1,200,000~3,000,000 1,000,000~3,000,000 2,000,000 600,000~1,200,000 500,000~1,000,000 750,000 300,000~600,000 100,000~500,000 300,000 150,000~300,000 100,000以下 5,000~150,000 5,000~150,000					

nexco「設計要領 第二集」より *最小値を示す。

表-5.2(5) 定数代表値の検討結果一覧

みよし処理	センター																		
			既往	値※1		J	と献値※2				本調	査・試験値				换算	章値		
地盤 区分	地層 記号	主な土質区分 (本調査結果)	対応する	N値	地盤区分	湿潤密度	粘着力	内部摩擦角	変形係数	N値		変形係数	20%粒径 平均	湿潤密度 γt(kN/m ³)	粘着力(N値) C(kN/m2)	内部摩擦角	内部摩擦角 φ(°)	変形係数 E(kN/m2)	透水係数 k(cm/s)
			地信记功			γ ((KIN/ III)	C(KIN/III)	ψ()	(KIN/III)	生值平均	補止 ※3	(KIN/III)	D20 (mm)	*4	*5	※ 6	平均※7	* 8	※ 9
人工地盤 (盛土)	В	砂混じり シルト質礫	盛土層 B	1~3	盛土・礫および礫ま じり砂	20	0	40	-	8.5	8	1,820	0.533	-	-	33.9	31.6	11,163	8.1E-02
自然地盤 (沖積層)	As	礫混じり粘土 礫混じりシルト	-	-	自然地盤・粘性土- 軟らかいもの	16	15以下	15	-	4.5	4	665	-	-	23.5	-	-	2,800	-
Dg 自然地盤	Dg(浅)	シルト質礫	-	-	自然地盤・礫混じり 砂-密実でないもの	19	0	35	-	35.0	45	-	0.018	-	-	45.0	38.4 ∳	31,500	3.2E-05
(洪積層)	Dg(深)	砂質礫	-	-	自然地盤・礫混じり 砂-密実なもの	21	0	40	-	50.0	50	-	-	-	-	46.6	39.7	35,000	-
自然地盤	WSb	泥質片岩 (風化)	片岩・風 化土層	39	軟岩・CL級(泥岩な いし粘板岩相当)	-	500	37	300,000	155.5	155	-	-	20.1	344.2	21.2	-	86,291	-
(基盤岩)	Sb	泥質片岩	片岩・軟 岩Ⅰ層	60以上	硬岩・CM級(泥岩な いし粘板岩相当)	_	1,250	40	750,000	300.0	300	_	_	21.2	513.6	21.5	_	136,098	_

※1:「ボーリング調査報告書」(H29、蜂谷工業・フジタ地質より ※2:nexco「土質定数」より。岩盤はダムサイトの例より。

:定数根拠とした値

※3:1以上は端数切捨て。50以上は「50」に丸め。岩盤のみ「300」に丸め。 ※4: 岩盤は γt=(1.173+0.4*LOG(N))*9.8より(nexco)。 ※5:粘土は c=0.5*qu。岩盤は「泥岩・凝灰岩・凝灰角礫岩」として/c=16.2*N^{0.606}より(nexco)。

**0.福上は C=-0.3*qu。 君盤は 記名 *疑次名 *疑次名 *疑次角燥名] 20 C C = 10.2*N 0.0003 0 (nexco)。 **6:砂・礫は $\phi = (20*N)^{\circ} 0.5+15 \sharp 0 (大崎1959)$ 。 岩盤は「泥岩 •凝灰岩 •凝灰角礫岩」として $\phi = 0.888*LOG(N) + 19.3 (nexco)$ 。 **7:砂・礫は $\phi = 4.8 \log eN1+21 \sharp 0 (i B8橋示方書2002)_{\circ} N1=(1-0N)/(\sigma'v+70) **N \leq 5 t \phi = 25^{\circ}$ 。 **8:粘土・砂・礫は E=700*N。岩盤は E=27.1*(N[°]0.69)*98.1 (nexco)。 **9:砂・礫は k=0.344*(D20[°]2.295) (クレーガー推定より)

みよし処理	センター											/		
					1		1	提	案値		1		1	
地盤 区分	地層 記号	主な土質区分 (本調査結果)		代表N值	<mark>湿潤密度</mark> γ t(kN/m ³)		粘着力 C (kN/m ²)			内部摩擦 角 ϕ([°])		変形係数 E(kN/m ²)		<mark>透水係数</mark> k(cm/s)
人工地盤 (盛土)	В	砂混じり シルト質礫	8	平均補正N値より。	20	文献からの一般値を採 用。	0	砂・礫質土につきC=0とした。	31	道示(2002)の換算値より。	1,800	現場試験値より。	8.1E-02	20%粒度からの推定値より。
自然地盤 (沖積層)	As	礫混じり粘土 礫混じりシルト	4	平均補正N値より。	16	文献からの一般値を採用。	23	平均補正N値からの換算 値より。	0	粘性土につきø=0とし た。	600	見場試験値より。	-	試験値ないため透水係数 算出対象外とした。
自然地盤	Dg(浅)	シルト質礫	45	平均補正N値より。	19	文献からの一般値を採 用。	0	砂・礫質土につきC=0とした。	35	道示(2002)の換算値は他 の文献値(密な礫混じり 砂およびCM平均)より課 題となるため文献に示さ れる値35とした	31,500	平均補正N値からの換算 値より。	3.2E-05	20%粒度からの推定値よ り。
(洪積層)	Dg(深)	砂質礫	50	平均補正N値より。	21	文献からの一般値を採 用。	0	砂・礫質土につきC=0とした。	39	道示(2002)の換算値より。	35,000	平均補正N値からの換算 値より。	-	試験値ないため透水係数 算出対象外とした。
自然地盤	WSb	泥質片岩 (風化)	155	平均補正N値より。	20	平均補正N値からの換算 値より(端数四捨五入)。	500	文献からの一般値(CL級 平均値)を採用。	37	文献からの一般値(CM級 平均値) 支採用。	300,000	文献からの一般値(CL級 平均値)を採用。	-	岩盤につき透水係数算 出対象外とした。
(基盤岩)	Sb	泥質片岩	300	平均補正N値より。	21	平均補正N値からの換算 値より(端数四捨五入)。	1,250	文献からの一般値(CM級 平均値)を採用。	40	文献からの一般値(CM級 平均値)を採用。	750,000	文献からの一般値(CM級 平均値)を採用。	-	岩盤につき透水係数算 出対象外とした。
		•		•		•					•	•		•

道示の換算値は 38.4°であるが、文献での「CL 級岩盤の平均」が37°とされ、これらより過大 となる。 →<u>安全側に「35°」と設定</u>。

表-5.2(6) 定数代表值一覧

みよし処理センター

地盤	내네 모코				提到	餐値		
地盤 区分	地層 記号	土な工貨区分 (本調査結果)	代表N值	<mark>湿潤密度</mark> γ t(kN/m ³)	粘着力 C (kN/m ²)	内部摩擦角 ϕ(°)	変形係数 E(kN/m ²)	透水係数 k(cm/s)
人工地盤 (盛土)	В	砂混じり シルト質礫	8	20	0	31	1,800	8.1E-02
自然地盤 (沖積層)	As	礫混じり粘土 礫混じりシルト	4	16	23	0	600	-
自然地盤	Dg(浅)	シルト質礫	45	19	0	35	31,500	3.2E-05
(洪積層)	Dg(深)	砂質礫	50	21	0	39	35,000	-
自然地盤	WSb	泥質片岩 (風化)	155	20	500	37	300,000	-
(基盤岩)	Sb	泥質片岩	300	21	1,250	40	750,000	_

表-5.2(7) 内部摩擦角值検討一覧

R02BNo.1	1													
	携代ナス	湿潤	飽和単位			R02BNo.1			水位=		2.20	m		
記号	年成りる 主な土質岩質	重量 (kN/m3)	重量 (kN/m3)	層厚 m	重量 kN/m2	下端深度m	深度 m	N	σv1 kN/m2	σv2 kN/m2	σ'v kN/m2	N1	φ	平均值
В	盛土・礫および礫まじり砂	20	21	3.90	82	3.90	1.3	5	27	0	50	7.1	30.4	
В							2.3	4	48	1	50	5.7	29.3	
В							3.3	4	69	10	59	5.3	29.0	29.6
Ac	自然地盤・粘性土-軟らかいも	16	17	2.60	44	6.50	4.3	5	76	19	57	6.7	30.1	
Ac							5.3	2	93	28	65	2.5	25.4	
Ac							6.3	2	110	37	73	2.4	25.2	26.9
Dg (浅)	自然地盤・礫混じり砂-密実で	19	20	2.50	50	9.00	7.3	22	126	46	80	24.9	36.4	
Dg (浅)							8.3	32	146	55	91	33.7	37.9	37.2
Dg (深)	自然地盤・礫混じり砂-密実な	21	22	5.70	125	14.70	9.0	50	147	62	85	54.7	40.2	
Dg (深)							10.0	50	169	71	98	50.5	39.8	
Dg (深)							11.2	50	195	81	114	46.3	39.4	
Dg (深)							12.2	50	217	90	127	43.2	39.1	
Dg (深)							13.2	50	239	99	140	40.5	38.8	
Dg (深)							14.3	50	262	108	153	38.1	38.5	39-3

※飽和重量=湿潤重量+1(kN/m3)

R02BNo.2	2													
	推合よう	湿潤	飽和単位		•	R02BNo. 2		•	水位=		1.20	m		
記号	梅成90 主な土質岩質	重量	重量	層厚	重量		深度		σ v1	σ v2	σ' v			平均值
		(KN/m3)	(kN/m3)	m	kN/m2	下端深度m	m	N	kN/m2	kN/m2	kN/m2	N1	¢	
В	盛土・礫および礫まじり砂	20	21	1.50	32	1.50	1.3	3	27	1	50	4.3	27.9	27.9
Ac	自然地盤・粘性土-軟らかいも	16	17	1.00	17	2.50	2.3	9	41	10	50	12.8	33.2	33.2
Dg (浅)	自然地盤・礫混じり砂-密実で	19	20	6.75	135	9.25	3.3	42	57	19	50	59.5	40.6	
Dg (浅)							4.3	42	77	28	50	59.5	40.6	
Dg (浅)							5.3	45	97	37	60	58.8	40.6	
Dg (浅)							6.3	49	117	46	71	59.1	40.6	
Dg (浅)							7.3	26	137	55	82	29.1	37.2	
Dg (浅)							8.3	34	157	64	93	35.5	38.1	39.6
Dg (深)	自然地盤・礫混じり砂-密実な	21	22	1.45	32	10.70	9.3	50	158	73	85	54.8	40.2	
Dg (深)							10.0	50	174	79	95	51.7	39.9	40.1

※飽和重量=湿潤重量+1(kN/m3)

R02BNo. 3	3													
	推合ナマ	湿潤	飽和単位			R02BNo. 3			水位=		1.15	m		
記号	梅成 9 つ 主な土質岩質	重量 (h-N/m2)	重量 (h-N/m2)	層厚	重量		深度		σ v1	σ v2	σ'ν			平均值
		(KN/ III3)	(KN/113)	m	kN/m2	下端深度m	m	N	kN/m2	kN/m2	kN/m2	N1	¢	
В	盛土・礫および礫まじり砂	20	21	1.65	35	1.65	1.3	16	27	1	50	22.7	36.0	36.0
Dg (浅)	自然地盤・礫混じり砂-密実で	19	20	2.60	52	4.25	2.3	23	40	10	50	32.6	37.7	
Dg (浅)							3.3	31	60	19	50	43.9	39.2	38.4

※飽和重量=湿潤重量+1(kN/m3)

R02BNo.4	Į													
記号	構成する 主な土質岩質	湿潤 重量 (kN/m3)	飽和単位 重量 (kN/m3)	層厚	重量 kN/m2	R02BNo.4	深度	N	水位= σv1 kN/m2	σv2 kN/m2	0.50 σ'ν kN/m2	m N1	6	平均值
В	盛土・礫および礫まじり砂	20	21	5.60	118	5.60	1.4	7	29	8	50	9.9	32.0	
В							2.3	8	48	16	50	11.3	32.7	
В							3.3	27	69	25	50	38.3	38.5	
В							4.3	6	90	34	56	8.1	31.0	
В							5.3	5	111	43	68	6.2	29.7	32.8

	R02BNo.1	R02BNo. 2	R02BNo.3	R02BNo.4	平均
В	29.6	27.9	36.0	32.8	31.6
Dg (浅)	37.2	39.6	38.4	-	38.4
Dg (深)	39.3	40.1	-	-	39.7

5.3 地盤の工学的性質の検討と支持地盤の設定

本調査地の地層は、中生代の三波川帯に属する結晶片岩を基盤とし、その上位に洪積層の礫層 Dg、沖積層の粘土層 Ac が覆っている。さらに、斜面部を除く地盤の上位には全体に砂礫主体の盛 土 B がなされている。

洪積礫層 Dg は、基盤岩の結晶片岩由来の礫を含む。礫は φ5~10cm とやや径が大きい角礫より なる。基質は細粒土(シルト〜細砂)を主体とし、礫・砂・細粒分はほぼ同程度の割合(概ね礫 分40%、砂分30%、細粒分30%)を示す。

締まりは良好で、深部はN値50以上を示し、構造物の支持地盤として問題はない。ただし、Dg 層でも浅部はやや締まりが不良となる箇所もあり、支持地盤として設定するには必要に応じ個別 に追加調査の実施も検討する。

粘土層 Ac は、細粒土を主体とするが、砂礫も 40%程度含む中間土的な性状を示す。締まりは 不良で N 値 10 以下を示し、構造物の支持地盤には適さない。

盛土 B は、洪積礫層 Dg と粒度組成はほぼ同様であり、概ね Dg の掘削土よりなるものと推定される。締まりは不良で N 値 10 以下を示しており、下位の沖積粘土 Ac と同様、支持地盤としては不適である。ただし、平均 N 値は 8 と沖積粘土 Ac に比べればやや高い。

上記地層ごとの粒度組成については、図-5.3(1)に示す。

^{5 - 20}

5.4 地盤の透水性の検討

本調査では、透水試験(現場・室内)は実施していないものの、粒度試験で求められる 20%粒度(D20)からの換算式(下式参照)により透水係数 k を算出し、地盤の透水 性を推定した。

$$\kappa$$
 = 0.344 × (D_{20} ^{2.295})

対象とした地質は、粒度試験で D20 が求められた、盛土層(以下「盛土 B」)、洪積礫 層 Dg 浅部(以下「Dg 浅部」)とした。

算出の結果、盛土 B は 8×10^{-2} cm/s とやや高い値を示す。一方、Dg 浅部は 3×10^{-5} cm/s と低透水性を示す。Dg 層は浅部でもやや細粒な基質より構成されており、地下水の流動は自然地盤では少ないものと想定される。

		$\begin{array}{c} \text{Dg} (3)\\ 3 \times 10\\ (3 \times 10^{-1})\end{array}$	8× (8×							
10	-11 10 ⁻¹⁰ 10	逻 -9 1	툴水係数 k ℓ 0 ⁻⁸ 10 ⁻⁷	(n/s) 10 ^{-∞}	10-5	10 ⁻⁴	10 ⁻³	10 ⁻²	10 ⁻¹	10 ⁰
透水性 実質上小透水 身 対応する土の種類 粘性土 {C}			<u>(</u> 微細砂, シ ーシルトー粘 {SF}[S-F]		中位 同 砂および礫 {GW}{GP} 清 {SW}{SP} {G {G-M}				樂 iP}	
透水係数を直接測 定する方法 勝 特殊な変水位 透水試験			変水位透水試験			定水位透水試験特殊な変か		殊な変水(水試験	Z	
透水係数を間接的に 推定する方法 圧密試験結果から計算			i tal			清浄な砂と礫は粒度と間隙比から計算				箪

図-5.4(1) 透水係数と土質区分「地盤調査の方法と解説」より引用・加筆

|--|

				上端	下端			粒度組	成				D20換算
箇所	孔名	試料番号	^{地層} 区分	深度 (m)	深度 (m)	最大 粒径	礫分	砂分	細粒分	D20	分類名	分類記号	透水係数 (cm/s)※
		B-1-2	В	2.15	2.45	19	39.1	32.6	28.3	0.0112	細粒分質砂質礫	GFS	1.15E-05
曝気槽棟·北東	R2-BNo.1	B-1-5	Ac	5.15	5.45	19	11.6	28.0	60.4	-	礫まじり砂質粘土(低液性限界)	CLS-G	-
		B-1-7	Dg(浅)	7.15	7.45	19	43.2	33.0	23.8	0.0267	細粒分質砂質礫	GFS	8.42E-05
喝烂捕捕,声声	D9 DN- 9	B-2-1	В	1.15	1.45	19	38.7	27.3	34.0	0.0092	細粒分質砂質礫	GFS	7.30E-06
嗉 刘 慴 保 · 闬 束	R2-BN0.2	B-2-7	Dg(浅)	7.15	7.45	19	28.2	40.5	31.3	0.0123	細粒分質礫質砂	SFG	1.42E-05
喝烂捕捕, 古西	D9 DM- 9	B-3-1	В	1.15	1.45	19	37.9	38.3	23.8	0.0308	細粒分質礫質砂	SFG	1.17E-04
曚 気 慴 悚・ 用 四	KZ-DINO.3	B-3-2	Dg(浅)	2.15	2.45	19	30.2	38.4	31.4	0.0134	細粒分質礫質砂	SFG	1.73E-05
唱气博博,北西	D2-DNo 4	B-4-2	В	2.15	2.45	19	52.3	28.4	19.3	0.0913	細粒分質砂質礫	GFS	1.42E-03
咴 ×\1盲1束•1L 四	R2-BNo.4	B-4-5	В	5.15	5.45	19	50.9	31.8	17.3	0.1240	細粒分質砂質礫	GFS	2.86E-03

%k=0.344∗(D20².295)

図-5.4(2) 深度・細粒分含有率と透水係数との関係
5.5 調査結果に基づく基礎形式の検討

本調査の結果、調査地の基礎地盤は主に礫層および片岩よりなり、比較的浅部より締まり良好な角礫混じりの礫質土が分布することが明らかとなった。

ここで、今後建設が計画される処分場構造物の支持層としては、一般に擁壁基礎で示される 「砂・礫地盤はN値30以上」が適するものと想定される。

なお、本調査の掘り止め基準は、これより過大となる「N値 50以上を 3m(未固結堆積層は 5m)」 とする地盤としたが、これは、本調査地では調査実績に乏しく、より安全側となる堅固な基礎地 盤の確認(既往調査でも「N値 60以上 3m」としていた)を目的としたためであり、N値 50未満 でも 30程度以上あれば支持層として大きな問題は無いと考えられる。

5.6 設計・施工上の留意点

(1) 基礎地盤の安定性照査(地盤改良工実施検討)

処分場構造物の支持層は、N値 50 ないし 30 以上を上限とする砂礫層とすれば大きな問題は 無い。ただし、これより浅く(Dg 層浅部ないし Ac 層)に設定する場合には、地盤改良工の実施も視野に、安定性の照査を経て、慎重に対応する必要がある。

(2) 計画変更にともなう地質調査の追加検討

本調査は、現時点で二期工事に計画されている「処理棟」の周辺を対象とし、主に土質構成・ 性状の確認、物理特性および強度特性の確認を目的に、ボーリング調査(コアリングによる土 質観察、標準貫入試験、孔内載荷試験、室内試験)を実施した。

今後、上記の処理棟の計画が変更される場合、地質情報の不足が懸念されるため、必要に応 じ、計画構造物の基礎部に対する地質調査の追加(ボーリング、サウンディング、サンプリン グ等)を検討する。

(3) 浄化センター内の埋設管について

本調査では、R2-BNo.3 孔の試掘で深さ 30cm 以内に2 本の埋設管が発見された(図-5.6(1))。 この埋設管については当初の図面に記載がなかったため、発注者立会いのもと確認を行い、そ の後の試掘地点を決定した。埋設管については今後の施工でも留意する必要がある。想定され る埋設管位置図については図-5.6(2)に示す。なお、発注者にて所有の埋設管資料(配管位置 図)は巻末資料に示す。

図-5.6(1) R2-No.3 孔埋設管状況 5-25

図-5.6(2) 埋設管位置図

[資料1 ボーリング柱状図]

調査名 汚泥再生処理センター建設に係る調査計画及び発注支援業務

ボーリングNo

				シートNo
ボーリング名	R 2 - B N o. 1 調査位置	徳島県三	好 市 井 川 町 西 井 川 9 0 6	北 緯 34°1'55.23"
発注機関	みよし広域連合	調査期間	令和 2年 10月 5日 ~ 2年	10月 8日 東 経 133° 51'2.71"
調査業者名	八千代エンジニヤリング株式会社 電話(06-6945-9272) 主任技自	i _{星山英一} 現 場 代理人	_ コア 鑑定者	^{対 絋 彰} ガーリング 高橋大介 責任者 高橋大介
孔口標高	98. 689m 角 180° 方 100° 90°	地 使 使 試 錐 機 盤 ₍₁₀ 水平0° 月	KR-SH	ハンマー 東邦半自動モンケン
総掘進長	15.19m 度 下, 0° 向 西, 東	勾 ロ 90° 0° 横 エンジン	N F A D - 5	ポンプ C P - 5 0

標	標	層	深	柱	土	色	相	相	記		孔 内					標	巨兰	隼 〕	貫	入言	試 懸	¢				原	位	置 試	験言	試 彩	₩採	取	室上	掘
					質		対	対			水 位	深	10cm	ごと	の「書	丁隆				N		偛				深	記セ	式 験	名里	深	試	採	内試驗	進
尺	高	厚	度	状	5		依	र्मम		((m) /	度	0 打 副	I 回 3 10 2	<u>緊</u> [四] 数 [0] /	<u>リ</u> 次 /				<u> </u>	-0	— —				度	4	3 よ 0. 加	*	度	料	取		
					<u>ک</u>		省	们可			測定	\sim	ζ	2	く 貫 ブ	丁ノ															番	方		Л
(m)	(m)	(m)	(m)	図 10	分感	調	度	度	事		月 日	(m)	10	20 3	0 (cl	重 m)	0	1	.0	20	30		40	50	60	(m)			/ ((m)	号	法	\smile	日
	94.75	3.90	3.90		盛土・砂混じりシルト質礫	灰褐	緩 い		GL-0~10cmはコンクリート。 礫分は o 0. 2~2cmの亜角礫主体 で、礫種は雑多な片岩主体。		-	1.15 1.45 2.15 2.45 3.15 3.45	1 2 1	2 2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5 0 5 1 0 4 1 0 4 1 0 4														2.15 2.45	B-1-2	Ξ	密度粒 皮含水 比	
1 4 1 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	92.19	2.60	6.50		砂礫混じりシルト	暗緑灰		柔らかい	指圧で容易にへこむ。 砂分は細~中粒砂主体。 礫分は φ 0. 2 ~ 0. 5 cm 主体で、最 大礫径 φ 2 cm。礫種は緑色片岩主 体。 植物片を含む。		10/7	4.15 4.45 5.15 5.45 6.15 6.45	$\begin{array}{c}1\\1\\20\\1\\15\end{array}$	1 1 1 1 15	2 5 30 2 30 30 30 30	$2 \\ 0 \\ 2 \\ 0 \\ 2 \\ 0 \\ 2 \\ 0 \\ 2 \\ 0 \\ 2 \\ 0 \\ 2 \\ 0 \\ 2 \\ 0 \\ 2 \\ 2$										<u>5.40</u> 6.00	7	孔内載荷試驗		<u>5.15</u> 9.45	B-1-5	Ō	密度粒 度含水 比液塑	
10 11 12 13 14 14	83.99	8.20	14.7(ଆ ଦିଠାର ଦୁର ୦୦୦୪୭ ପୁର ୦୦୪୭ ପୁର ୦୦୦୪୭ ପୁର ୦୦୪୭ ପୁର ଜୁ୦୦୦୪୭ ପୁର ୦୦୪୭ ପୁର ୦୦୪୭ ପୁର ୦୦୪ କୁମ୍ଭ ୦୦୪୭ ପୁର ୦୦୪ କୁମ୍ଭ ୦୦ ଆ ସୁର ୦୦୪ କୁମ୍ଭ ୦୦୪ କୁମ୍ଭୁର ୦୦୪ କୁମ୍ଭୁର ୦୦୪ କୁମ୍ଭୁର ୦୦୪ କୁମ୍ଭ ୦୦୪ କୁମ୍	シルト混じり砂質礫	褐	密~ 非常に密		GL-6.5~7mは暗緑灰色。 礫分はφ0.2~3cmの角礫主体で、 最大礫径φ80cm。 礫種は緑色片岩や泥質片岩主体。 GL-9.00~9.09mのN値50は葉当た りのため支持層評価からは除外。			7.15 7.45 8.15 8.45 9.00 9.09 10.00 10.08 11.15 11.28 12.15 13.28 14.15 14.35	7 9 50 9 50 8 38 32 36 19 50	6 9 10 1 12 3 18 4 14 31	9 2: 33 3: 34 5: 55 5: 6 5: 1: 5: 1: 5: 1: 5: 1: 5: 2: 2: 5: 5: 2: 5:	$\begin{array}{c} 2\\ 0\\ 2\\ 0\\ 2\\ 0\\ 0\\ 0\\ 0\\ 0\\ 3\\ 11\\ 0\\ 0\\ 3\\ 11\\ 0\\ 0\\ 3\\ 11\\ 0\\ 0\\ 0\\ 7\\ 1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	22 23 57 55 55)								7.15	B-1-7	\odot	密度粒 支含水 1	10 10 10 10 10 10 10 10 10 10 10 10 10 1
15 16 17 18 18	5 <u>83.50</u>	0.49	15.19		泥質 片 岩	淡褐			ハンマーでにたくどか日か日に 砕ける。長さ5cm程度の片状コ ア。 割れ目だいに風化が見られる。 割れ目には0.2~0.5cm程度の褐 色粘土を挟む。 岩級細区分は、15.15mまでCL級(C~DIIC)、以深コア無いがCM級 とみられる。 (14.7m以深は、上位礫層の巨礫 の可能性もあり)		Ę	<u>15.15</u> 15.19	4		4	<u>1</u> 37																		

調査名 汚泥再生処理センター建設に係る調査計画及び発注支援業務

ボーリングNo

	<u> </u>			シートNo
ボーリング名	R2-BNo.2	調査位置	徳 島 県 三 好 市 井 川 町 西 井 川 9 0 6	北 緯 3 4° 1' 5 4 . 2 0"
発注機関	みよし広	或連合	調査期間 令和 2年 10月 1日 ~ 2年 10月 3日	東 経 133°51'2.00"
調 査 業 者 名	八千代エンジニヤリング株式会社 電話(06-6945-9272)	主任技師 星山英一	現場。 コア 代理人 一 当ア 総定者 赤對紘彰	ボ−リング 責任者 高橋大介
孔口標高	角 180° 方 98.674m 上 90^{\circ} 270^{\circ}	^北 0° 地 使 90° 盤 ₄∧ 水平0° 用	試錐機 KR-SH ハンマー 蒸下用具	東邦半自動モンケン
総掘進長	14.00m 度 下 而 西	$ \begin{array}{c c} & & & \\ \hline & & \\ 0^{\circ} & a \end{array} & \begin{array}{c} & & \\ \mathbf{a} \end{array} & \begin{array}{c} & \\ \mathbf{a} \end{array} & \begin{array}{c} & & \\ \mathbf{a} \end{array} & \end{array} & \mathbf{a} \end{array} & \begin{array}{c} & \\ \mathbf{a} \end{array} & \mathbf{a} \end{array} & \begin{array}{c} & \\ \mathbf{a} \end{array} & \mathbf{a} \end{array} & \mathbf{a} \end{array} \\ \end{array} \\ \\ \mathbf{a} \end{array} & \mathbf$	エンジン NFAD-5 ポンプ	C P – 5 0

標	標	層	深	柱	土	色	相	相	言己		孔 内					標	真進	進 貫	ŧ 🤈	入 試	験			原	位	过置 試	験	試彩	 採	取	室	掘
					質		対	対			水位	深	10cm、 打撃	ごと(回孝	の 打撃 数 回	ſ Ž				N	。値			深		試 験 および結	名 果	深	試	採	内試験	進
尺	高	厚	度	状	区		密	稠			(1)/ 測	度	0 1	.0 2	- 数 0 / 、 貫	¢ t					0			度		/		度	料番	取 方		月
(m)	(m)	(m)	(m)	図	分	調	度	度	事		定 月 日	(m)	7 10 2	203	(入 量 0 _{(cn}	r)	0	10		20	30	40	50 6	₅₀ (m)		X		(m)	号	法	\smile	日
				00000	盛土・ 砂混じ りシル ト質磁	灰褐	緩 い		GL-0~8cmはコンクリート。 礫分 は φ 0.5~1cmの角礫主体。指圧 B でへこむ。			1.15	2	1	3													1.15			密度約	
	97.	7 1.50	0 1.50		1 砂礫混 じり粘	暗灰		硬い	¹ 砂分は中~粗粒砂主体。礫分は ⁰ 0.2~0.5cmの礫主体。指圧で ¹ Ac	,	10/2 2.00	1.45 2.15	1	20 4 4	30 4 9) 3	9	\mathbf{A}										1.45	B-2-1	-	置 度 含水 地 液 塑	
1 3	96. 95.	7 1.00 67 0.60	2.50 3.10		エ 礫質シ ルト	褐		、 硬 い	<u>植物片を含む。</u> 礫種は片岩の角礫からなり、礫 径は φ 0.5 ~ 2 c c mが主体。			2.45 3.15	6 1	10 3	0 46) 9					\rightarrow											
4 5 6 7 8 9 10 11 12 13 14 15 16 16 17 16 17 18	87.	7 7.60) 10.70		· · · · · · · · · · · · · ·				指圧でへこむ。	5		3.45 4.15 5.15 5.45 6.15 7.15 7.45 8.15 9.15 9.14 10.00 10.05 11.00 11.00 12.00 12.00 13.00 14.00	15 1 6 1 14 1 8 9 1 10 2 50 5 10 2 50 1 10 2 10 2	14 1 16 2 15 2 9 5 12 1 20 2 20 <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{array}{c}) & 44 \\ 2 \\ 2 \\ 2 \\ 3 \\ 3 \\ 2 \\ 3 \\ 3 \\ 3 \\ 3$</td> <td></td> <td>7.15</td> <td>B-2-7</td> <td></td> <td>密度含水</td> <td>2\2 </td>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c}) & 44 \\ 2 \\ 2 \\ 2 \\ 3 \\ 3 \\ 2 \\ 3 \\ 3 \\ 3 \\ 3$												7.15	B-2-7		密度含水	2\2

調査名 汚泥再生処理センター建設に係る調査計画及び発注支援業務

ボーリングNo

				シートNo
ボーリング名	R 2 - B N o . 3	調査位置	徳 島 県 三 好 市 井 川 町 西 井 川 9 0 6	北 緯 34°1'54.59"
発注機関	みよし広	域 連 合	調査期間 令和 2年 9月 28日 ~ 2年	9月 30日 東 経 133° 51'2.22"
調 査 業 者 名	八千代エンジニヤリング株式会社 電話(06-6945-9272)	主任技師 星山英一	現場	對 紘 彰
孔口標高	角 180° 方 98.649m 上 90^{\circ} 270^{\circ}	北 0° 地 使 90° 盤 _秋 水平0° 用	試錐機 KR-SH	ハンマー 東邦半自動モンケン
総掘進長	7.10m 度 下 0° 向 1	→ _東 勾 ^m ^m → ^m →	エンジン NFAD-5	ポンプ CP-50

標	標	層	深	柱	土	色	相	相	記	Π	孔内						標	準	貫	入	試	験			原	位	工置試	験	試彩	∤ 採	取	室山	掘
					質		対	対			水 位	深	100	mご。	との	打撃				N		値			深	Ē	試 験 お上び結	名里	深	試	採	内試驗	進
尺	高	厚	度	状	<u>र</u> ्य		宓	毛田			(m)	度	0 11	撃 回 10	」 致 20	回 数 /				<u> </u>	-0-	<u> </u>			度		40 み 01 ml /		度	料	取		н
							省	们问			測定日		2	2	2	貫入													\sim	番	方		Л
(m)	(m)	(m)	(m)	図 //	分	調	度	度	事		月 9月30 0.30	(m)	10	20	30 (重 (cm)	0		10	20	30)	40	50	₆₀ (m)			/	(m)	号	法)	日
				0 0 0 0 0 0 0 0	盛土・ 砂混じ り礫質	褐		宇常に	GL-0.0~10.0cmはコンクリート。 礫分は φ 5mm程度の角礫主体で、 B		<u> </u>	1 15	3	6	7	16													1 15			apa mpaninga	
	97.00	1.65	1.65		シルト			硬 い	傑裡は万石土体。 指注 ぐへ しむ。 /			1.45				30	16		G	×								-	1.45	B-3-1	0	密度粒 度含水 比	
					シル				礫分はφ10~20cmの角礫主体で、 礫種は主に黒色・灰色の泥質片			2.15 2.45	8		8	23 30	23			ß	2								2.15 2.45	B-3-2	Ξ	密度粒 度含水 比	
					ト質	褐	密		岩である。 礫の間には2~5cmのシルト層を 挟む。			3.15	8	9	14	31 30	31				\rightarrow	9											9 29
4	94.40	2.60	4.25		· (宋							4.15	12	38 9		50 19	79						-	→ →									
5				ריק איק איק איק איק איק איק איק איק איק איק איק איק איק איק איק	泥	暗			片理角約40°で片理面が発達。 片理面に沿って5cm間隔で割れ目 が発達			5.15	50			50 10	150						-		_								
				ئى ئى ئى ئى ئى ئى بى ئى ئى ئى ئى ئى بى ئى ئى ئى ئى ئى بى ئى ئى ئى ئى	質片	灰~~			割れ目には2~5mmの褐色粘土を 挟む。ハンマーでたたくと鈍い 金属音がなる。)		6.15	36	14		50_{13}	115																1
	91.55	2.85	7.10	سر لو لو لو لو لو رو لو لو لو لو رو لو لو لو لو رو لو لو لو لو لو رو لو لو لو لو لو		<i>I</i> X			岩級細区分は、CL級(CⅢc)と評 価される。 /			6.28 7.00	50			50 10	150																9 30
												7.10					150																
9																																	
10																																	
- 11																	-																
12																																	
12																																	
<u> </u>																																	
15																																	
16																									_								
17																																	
18																																	
19 E																																	

調査名 汚泥再生処理センター建設に係る調査計画及び発注支援業務

ボーリングNo

	<u> </u>			シートNo
ボーリング名	R 2 - B N o. 4 調音	查位置 徳島県	三好市井川町西井川906	北 緯 34°1'55.19"
発注機関	みよし広域運	連合調査期間	1 令和 2年 9月 23日 ~ 2年	9月 26日 東 経 133° 51'1.83"
調査業者名	八千代エンジニヤリング株式会社 電話(06-6945-9272) 主	任技師 星山英一 現 5代理 2	湯 _ コ ア _赤 低 - 鑑定者	* 對 紘 彰 満-リング 高 橋 大 介 責 任 者
孔口標高	角 180° 方 北 0 98.801m 上 90° 70° ↓	90° 地	₭ R − S H	ハンマー 落下用具 東邦半自動モンケン
総掘進長	9.05m 度 下 0° 向 180° 1	▽ _東 勾 ≞ >→ 機 _南 ヱンジン	• N F A D - 5	ポンプ CP-50

標	標	層	深	柱	土	色	相	相	記	孔内					;	標	準	貫	入	試	験			原	位	亡 置 試 !	験 試	料打	採耳	文 室	≧ 掘
					質		対	対		水位	深	10c 打	mごる 撃 回	との 数	打撃回				N		値			深	A C. Tull	試 験 4 および結り	ム 深 見	뉦	代 书	F 系 題	, 式 _食 進
尺	高	厚	度	状	区		密	稠		(m) / 測	度	0	10	20	Ⅰ数 / 重				_					度		,)度	彩	打	Ż ~	~ 月
(m)	(m)	(m)	(m)	図	分	調	度	度	事	定月	(m)	\[\] \[10 \]	\[\] \[\[\] \[201	_貝 入 量									(m)				番	F 그 기 기	<u>,</u>	- 8
-		(111)	()		盛土・	म्य	~ 經	\sim		H		10	20	30 ((cm)	0		10	20	30)	40	50	60 (III)		<u>.</u>	/ (11)		/ 12	-	9
1	97.25	1.55	1.55	000	シルト 質礫	褐	収		铼全は φ 20cm。 アスファルトやコンクリートを 含む。		1.23	2	3	2	$7 \\ 30$	7	φ							1.50							
2	96.80	0.45	2.00		盛土・ 礫質シ ルト	褐		中 位	指圧でへこむ。 ϕ 0.5~3.0cmの 角礫主体。		1.53 2.15	3	2	3	8 30	8								2.10		孔内載荷試験 	(LLT) 2.15		-2 (-	-) 密度	^[] [] [] [] []
3				00	盛土				B ゅ0.5~2.0mの角礫主体で 最大		2.45 3.15	11	11	5	27 30	27			\searrow								2.45			比	
4				000	・シル	灰褐	緩 い		礫径は o 10cm。 礫種は緑色片岩や泥質片岩が主 体。	0 (00	3.45 4.15	1	2	3	6	6	~														
					ト 質 礎				3mのN値が高いのは礫当たりのた めとみられる。	9/26 4.80	4.45 5.15	2	2	1	5	0								_			5.15			密度	[粒]
	93.20 92.80	3.60 0.40	5.60 6.00		○ 礫混じ り粘土	暗灰		中位	/ 指圧でへこむ。 φ 1.0~3.0cmの /Ac 角礫主体。		5.45	10	12	26	30 48	5	6										5.45	B-4-	-5 (-) 度言 比	冰
				نیک کر کر کر نیک کر کر کر کر بر کر کر کر کر بر کر کر کر کر بر کر کر کر کر					GL-6.0~6.5mは細礫状。片理角 約65°で片理面が発達。 片理面に沿って風化が見られ、2		6.45 7.00	50			30 50 7	48							0								24
				یے کے ۲ کو ۲ کو یہ کر کے مرکز یہ کر کے کو کر سرچی کی کہ کو کر	近 質 片	黒 ・ 褐			0cm間隔で割れ自が発達している。 割れ目には1~4cmの褐色粘土を		7.07	50			50	214															
	00.75	0.05	0.05		岩	1923			挟む。 岩級細区分は9.0mまでCL級(CIII c)と評価。9.0m以深コア無いがC M級とみられろ		8.08	50			50	188-						-	>								9
	89.75	3.05	9.05								9.00	. 5			5	300-							->	_							25
10																															
11																								_							
12																_								_							
13																_								_							
- 14																_															
15																			_					_							
16																								_							
17																															
18																															

[資料2 コア写真]

卷末2-2

[資料3 現場写真]

ボーレグ調査

KY活動

写J

写真

ボーレング調査	
R2-BNo.1孔	
施工前遠景	

ボールング調査 R2-BNo.1孔 施工前·近景

ボールング調査

R2-BNo.1孔

搬入状況(人肩)

ボーレグ調査
R2-BNo.17L
試掘状況

ボーレグ調査

R2-BNo.1孔

試掘完了(GL-1.00m)

ボールグ調査

R2-BNo.1孔

足場仮設状況

ボールグ調査
R2-BNo.1孔
足場高さ(1.02m)

TRE JAAkhmishamishamis
NG A ALTER
K A A A A

ボーレグ調査

P2-BNo.1孔 全景

ボーレグ調査

R2-BNo.1孔

給水状況

ボールング調査
掘削水循環状況

ボールグ調査

R2-BNo.1孔

掘進状況

ボーレグ調査

R2-BNo.1孔

標準貫入試験状況

ボールク調査
R2-BNo.1孔
残尺2.11m(上端)

ボーレグ調査

R2-BNo.1孔

残尺2.11m(下端)

ボールグ調査

R2-BNo.1孔

検尺15.19m-遠景

ボーレグ調査
R2-BNo.1孔
検尺15.19m 近景

R2-BNo.1孔	
孔内閉塞状況	

ボーレグ調査

ボールグ調査

R2-BNo.1孔

施工後

ボーレク調査
R2-BNo.1 別孔
試屈状況

ボーレグ調査

R2-BNo.1 別孔

試掘完了(GL-1.00m)

ボーレグ調査

R2-BNo.1 別孔

掘進状況

ボーレグ調査

R2-BNo.1 別孔

孔内水平載荷詰瑪剣状況(LLT)

(中点5.70m)

R2-BNo.1 別孔

ボールグ調査

孔内水平載荷調換状況(LLT) (中点5.70m)ゾンデ挿入状況

ボーレグ調査

R2-BNo.1 別孔

孔内水平載荷詞 講会状況(LLT)

(中点5.70m)測定状況

ボールグ調査
R2-BNo.1 別孔
残尺2.60m(上端)

<image>

ボーレグ調査

R2-BNo.1 別孔

残尺2.60m(下端)

ボーレグ調査

R2-BNo.1 別孔

検尺6.00m-遠景

ボーレク調査	
R2-BNo.1 別孔	
検尺6.00m 近景	

ボーレグ調査

R2-BNo.1 別孔

孔内閉塞状況

写真

ボールング調査	
R2-BNo.27L	
施工前遠景	

ボールング調査
R2-BNo.2孔
施工前近景

ボーレグ調査

R2-BNo.2孔

搬入状況(人肩)

ボールング調査	
R2-BNo.2孔	

試掘状況

ボーレグ調査

R2-BNo.2孔

試掘完了(GL-1.00m)

ボーレグ調査

R2-BNo.2孔

足場仮設状況

ボーレク調査
足場高さ(1.02m)

ボールング調査	
R2-BNo.2孔	
全景	

ボーレグ調査

R2-BNo.2孔

給水状況

ボーレグ調査
R2-BNo.2孔
掘削水循環状況

ボーレグ調査

ボールグ調査

R2-BNo.2孔

標準貫入試験状況

ボーレク調査
R2-BNo.2孔
残尺2.30m(上端)

R2-BNo.2孔 残尺2.30m(下端)

ボーレグ調査

ボールグ調査

R2-BNo.2孔

検尺14.00m-遠景

R2-BNo.2孔
検尺14.00m 近景

ボー	ーレグ調査	

R2-BNo.2孔

孔内閉塞状況

ボーレグ調査

R2-BNo.2孔

施工後

ボーレング調査
R2-BNo.3孔
なておき見
加工制力是京

ボールグ調査

R2-BNo.3孔

施工前近景

ボーレグ調査

R2-BNo.3孔

搬入状況(人肩)

ボーレグ調査	
R2-BNo.3孔	
試掘状況	

ボールグ調査

R2-BNo.3孔

試掘完了(GL-1.00m)

ボーレグ調査

R2-BNo.3孔

試掘時埋設管状況

ボールク調査
R2-BNo.3孔
足場/反認光品

ボーレグ調査

R2-BNo.3孔

足場高さ(1.05m)

ボーレグ調査

- R2-BNo.3孔
- 全景

ボーレク調査	
R2-BNo.3孔	
給水状況	

ボーレング調査 R2-BNo.3孔

掘削水循環状況

ボーレグ調査

R2-BNo.3孔

掘進状況

ボーレグ調査
R2-BNo.3孔
標準貫入試験状況

ボーレグ調査

R2-BNo.3孔

残尺2.20m(上端)

ボーレグ調査

R2-BNo.3孔

残尺2.20m(下端)

ボールング調査
R2-BNo.37L
検尺7.10m-遠景

ボーレグ調査

R2-BNo.3孔

検尺7.10m-近景

ボーレグ調査

R2-BNo.3孔

孔内閉塞状況

ボーレグ調査	
--------	--

R2-BNo.3孔

施工後

与具

写真

ボーレグ調査
R2-BNo.4孔
施工前遠景

ボールング調査

R2-BNo.4孔

施工前近景

ボーレグ調査

R2-BNo.4孔

搬入状況(ユニック)

ボーレク調査
R2-BNo.4孔

ボーレグ調査

R2-BNo.4孔

試掘完了(GL-0.50m)

ボーレグ調査

R2-BNo.4孔

足場仮設状況

ボールング調査
R2-BNo.4孔
足場條絆角(28°)-遠景

ボールグ調査

R2-BNo.4孔

足場條約)-近景

ボーレグ調査

R2-BNo.4孔

全景

ボーレク調査
R2-BNo.4孔
給水状況

ボーレグ調査

R2-BNo.4孔

掘削水循環状況

ボーレグ調査

R2-BNo.4孔

掘進状況

ボールング調査
R2-BNo.4孔
標準貫入試験

ボールグ調査

R2-BNo.4孔

残尺2.25m(上端)

ボーレグ調査

R2-BNo.4孔

残尺2.25m(下端)

ボーレク調査	
R2-BNo.4孔	
検尺遠景	

ボーレグ調査

R2-BNo.4孔

検尺近景

ボーレグ調査

R2-BNo.4孔

孔内閉塞状況

			<u> </u>
-		r //	「山本
	· ·	ノノノ	아마르

R2-BNo.4孔

施工後

写真

ボーリング調査

R2-BNo.4 別孔

掘進状況

ボーリング調査

R2-BNo.4 別孔

孔内水平載荷試験状況(LLT)

ボーリング調査

R2-BNo.4 別孔

孔内推計載荷試験状況(LLT)(中点1.80m)ゾンデ挿入状況

ボーリング調査

R2-BNo.4 別孔

 孔内水平載荷試験状況(LLT)

 (中点1.80m) 測定状況

ボーリング調査
R2-BNo.4 別孔
残尺2.50m(上端)

ボーリング調査

R2-BNo.4 別孔

残尺2.50m(下端).

ボーリング調査

R2-BNo.4 別孔

検尺−遠景

ボーリング調査 R2-BNo.4 別孔 検尺-近景

写真

[資料4 孔内水平載荷試験データシート およびグラフ]

<u>_ L L T 測定データーシート</u>											
調査件名	汚泥再生 計	処理セ	ー ンター 発注支持	建設に係 愛等業務	る調査	測定者	高橋	大介	自然水位	GI –	_ m
測定No	R2–Bn	o 1	深度	GI –	5 70m	記録者	高橋	<u>大介</u>	孔内水位	GI –	0 00 m
測定月日	2020/1	0.1 10/8	時間	14:30~	~16:00	使用機械	MODFI	-4188	<u>れい水は</u> ないか高さ	GI +	1 25 m
地質名	<u> していた で い し に ち に た 信 粘 </u>	$+ (\Delta c)$	N 值	11100)	12/11/2010	model	1100		GE -	1.20 m
	<u>シル </u>	<u>工 (//0/</u> 大哲	レー に に し し し し し し し し し し し し し し し し し	<u></u> ヽイカー	-	▲ 初期	スタンドノ	・ パイプのァk	位		3 20 cm
12 ICT	(内符		エコム)	<u> </u>	<u>ハノン 1</u> 後スタン	<u>い」ンのホ</u> ミパイプの	水位		3 40 cm
I	(1,111)				/						0.40 011
註]1) PGは使用ゴムに応じてあらかじめ定めたH-PG曲線より求める。 2) Psは(PG-P)を求めその最大値とする。Ps= 0.003 MPa 3) Peは次式から求める。Pe=P+Ps-PG <u> セル水圧 ガス圧 スタンドパイプよみH'(cm)</u> <u> ΔH(cm)</u> <u> H(cm)</u> <u> PG</u> <u> PG-P</u> <u> Pa</u> <u> r</u>											
セル水圧	ガス圧	スタ	ンドパイ	プよみH'	(cm)	Δ H (cm)	H (cm)	PG		Ре	r
P(MPa)	P(MPa)	15	30"	60"	120"	H120″-H30″	H120″-A	P(MPa)	P(MPa)	P(MPa)	(cm)
0.01	0.02	3.50	3.60	3.70	3.80	0.20	0.60	0.009	-0.001	0.000	4.043
0.03	0.04	4.00	4.30	4.70	4.90	0.60	1. 70	0.030	0.000	0.003	4. 122
0. 05	0.06	5.30	5.60	6.00	6. 50	0. 90	3. 30	0. 050	0.000	0.003	4. 233
0. 07	0. 08	6.90	7.30	7.70	8. 30	1.00	5. 10	0.073	0. 003	0.000	4. 355
0. 08	0. 10	8.60	8.90	9.40	9.90	1.00	6. 70	0.079	-0. 001	0.004	4. 460
0. 10	0. 12	10. 30	10.60	11.00	11. 80	1. 20	8.60	0. 091	-0. 009	0. 012	4. 582
0. 12	0. 14	12. 20	12.60	13.10	13.90	1. 30	10. 70	0. 101	-0. 019	0. 022	4. 713
0.14	0.16	14. 30	14. 70	15.30	16. 20	1. 50	13.00	0. 106	-0. 034	0. 037	4.853
0.16	0. 18	16.60	17.00	17.70	18.60	1.60	15. 40	0. 126	-0. 034	0. 037	4.995
0. 18	0. 20	19.10	19.50	20.30	21.40	1. 90	18. 20	0. 134	-0. 046	0. 049	5.155
0. 20	0. 22	21.90	22. 30	23.00	24. 20	1. 90	21.00	0. 137	-0. 063	0. 066	5.310
0. 21	0. 24	24. 70	25.10	25.90	27.10	2.00	23. 90	0. 139	-0. 071	0. 074	5.467
0. 23	0. 26	27.60	28.10	29.00	30. 40	2. 30	27. 20	0. 159	-0. 071	0. 074	5.639
0. 25	0. 28	31.00	31.50	32.30	33. 80	2. 30	30. 60	0. 157	-0. 093	0. 096	5.812
0. 27	0. 30	34.40	35.00	35.90	37.70	2. 70	34. 50	0. 162	-0. 108	0. 111	6.004
0. 28	0. 32	38. 30	38.80	39.90	41.70	2. 90	38. 50	0. 169	-0. 111	0. 114	6. 194

						_			
調杏件名	汚泥再生処理セ	ンタ	—延	建設に係	る調査				_
에보니 입	計画及び	発注	支援	爰等業務			測定者	高橋大介	É
測定No	R2-Bno. 4	深	度	GL-	1.80m		記録者	高橋大介	子
測定月日	2020/9/26	時	間	14:30~	~ 16:00] [使用機械	MODEL-4188	9
地質名	砂質シルト(B)	Ν	値		7				
使用	ゴム筒の材質	生日	ムノ	ヽイカー			A 初期	スタンドパイプの水	く位
	外筒	ī)		B 挿入	 後スタンドパイプの)水	

測 定 者	高橋大介	自然水位	GL-	- m
記録者	高橋大介	孔内水位	GL-	- m
使用機械	MODEL-4188	タンク高さ	GL+	1.25 m

A 初期スタンドパイプの水位	0.60 cm
B 挿入後スタンドパイプの水位	0.90 cm

註]1) PGは使用ゴムに応じてあらかじめ定めたH-PG曲線より求める。

<u> LLT測定データーシート</u>

2) Psは(PG-P)を求めその最大値とする。Ps=-0.007 MPa Peは次式から求める。Pe=P+Ps-PG

セル水圧	ガス圧	スタ	ンドパイ	プよみH'	(cm)	Δ H (cm)	H (cm)	РG	PG-P	Рe	r
P(MPa)	P (MPa)	15″	30″	60″	120″	H120"-H30"	H120″–A	P(MPa)	P(MPa)	P(MPa)	(cm)
0. 02	0. 02	1. 20	1.30	1.40	1. 50	0. 20	0. 90	0. 013	-0. 007	0.000	4.065
0. 04	0. 04	1. 80	1.90	2.00	2. 10	0. 20	1. 50	0. 027	-0. 013	0. 006	4. 107
0.06	0.06	2. 30	2.40	2.60	2. 70	0. 30	2. 10	0. 037	-0. 023	0. 016	4. 150
0. 08	0. 08	2. 90	3.00	3. 20	3. 30	0. 30	2. 70	0. 045	-0. 035	0. 028	4. 191
0. 10	0.10	3. 50	3.60	3.80	3. 90	0. 30	3. 30	0. 050	-0. 050	0. 043	4. 233
0. 12	0. 12	4. 10	4. 30	4.40	4. 50	0. 20	3. 90	0. 057	-0. 063	0. 056	4. 274
0. 14	0. 14	4. 80	4.90	5.00	5.10	0. 20	4. 50	0. 064	-0. 076	0. 069	4. 314
0. 15	0.16	5.30	5. 50	5.60	5. 70	0. 20	5. 10	0. 073	-0. 077	0. 070	4. 355
0. 17	0. 18	5.90	6.00	6. 20	6. 30	0. 30	5. 70	0. 077	-0. 093	0. 086	4. 394
0. 19	0. 20	6. 50	6.60	6.80	6. 90	0. 30	6. 30	0. 085	-0. 105	0. 098	4. 434
0. 21	0. 22	7.00	7.10	7.30	7.40	0. 30	6. 80	0. 081	-0. 129	0. 122	4. 467
0. 23	0. 24	7.60	7.70	7.80	7.90	0. 20	7. 30	0. 086	-0. 144	0. 137	4. 499
0. 25	0. 26	8.10	8.30	8.40	8.60	0. 30	8. 00	0. 095	-0. 155	0. 148	4. 544
0. 27	0. 28	8. 70	8.80	9.00	9.10	0. 30	8. 50	0. 101	-0. 169	0. 162	4. 576
0. 29	0.30	9.30	9.40	9.60	9. 70	0. 30	9. 10	0. 096	-0. 194	0. 187	4.614
0. 31	0. 32	9.90	10.00	10. 20	10. 30	0. 30	9. 70	0. 102	-0. 208	0. 201	4. 651
0. 33	0. 34	10. 50	10.60	10.80	11.00	0. 40	10. 40	0. 110	-0. 220	0. 213	4. 695
0.35	0.36	11.20	11.30	11.50	11.80	0. 50	11. 20	0. 106	-0. 244	0. 237	4. 744
0. 37	0. 38	11.90	12.10	12.30	12.60	0. 50	12. 00	0. 114	-0. 256	0. 249	4. 793
0.39	0.40	12.80	12.90	13. 20	13. 50	0. 60	12. 90	0. 122	-0. 268	0. 261	4.847
0. 41	0. 42	13. 70	13.90	14. 20	14. 50	0. 60	13. 90	0. 113	-0. 297	0. 290	4. 907
0. 42	0.44	14. 80	15.00	15.30	15. 70	0. 70	15. 10	0. 123	-0. 297	0. 290	4.977
0. 44	0.46	15.90	16.10	16.50	17.00	0. 90	16. 40	0. 121	-0. 319	0. 312	5.053
0.46	0. 48	17. 20	17.50	17.90	18. 50	1. 00	17. 90	0. 132	-0. 328	0. 321	5. 138
0. 48	0. 50	18.80	19.00	19.50	20. 20	1. 20	19. 60	0. 128	-0. 352	0. 345	5. 233
0. 50	0. 52	20.60	20.90	21.40	22. 30	1. 40	21.70	0. 142	-0. 358	0. 351	5.349
0. 52	0. 54	22. 70	23.00	23.60	24. 50	1. 50	23. 90	0. 156	-0. 364	0. 357	5.467
0. 54	0. 56	24. 90	25. 20	25.90	27.00	1. 80	26. 40	0. 154		0. 379	5. 598

[資料5 土質試験結果データシート]

土質試験結果一覧表(基礎地盤)

調査件名 汚泥再生処理センター建設に係る調査計画及び発注支援業務

整理年月日 2020年 11月 4日

_ _ _ _ _ _ _ _ _

整理担当者 杉本 敏郎

試	计 料 番 号	B-1-2	B-1-5	B-1-7			
((深 さ)	$(2.15 \sim 2.45 \text{m})$	$(5.15 \sim 5.45 \text{m})$	$(7.15 \sim 7.45 \text{m})$			
	湿 潤 密 度 ρ _t g/cm³						
_	乾燥密度 ρd g/cm³						
	土粒子の密度 $ ho_{s}$ g/cm ³	2.755	2.871	2.929			
	自然含水比 w_n %	14.2	27.2	13.8			
般	間隙比。						
	飽 和 度 S _r %						
	石 分 (75mm以上) %						
	礫 分 ¹⁾ (2~75mm) %	39.1	11.6	43.2			
粒	砂 分 ¹⁾ (0.075~2mm)%	32.6	28.0	33.0			
	シルト分 ¹⁾ (0. 005~0. 075mm) %	13.8	33. 5	13.5			
	粘土分 ¹⁾ (0.005mm糒)%	14.5	26.9	10.3			
	最大粒径 mm	19	19	19			
度	均等係数U。	1103.59	_	524.11			
	50%粒径 <i>D50</i> mm	0.8841	0.0340	1.2002			
n ン	液性限界 w1 %		35.8				
システ	塑性限界 <i>w</i> _ℙ %		19.3				
ンシ	塑性指数 I _p		16.5				
一特性							
分	地盤材料の	細粒分質	礫まじり砂質粘土	細粒分質			
	分類名	砂質礫	(低液性限界)	砂質礫			
類	分類記号	(GFS)	(CLS-G)	(GFS)			
	試 験 方 法						
圧	压 縮 指 数 C。						
	圧密降伏応力 p_{\circ} kN/m²						
密							
Н							
	一軸圧縮強さ q _u kN/m ²						
軸	破壊ひずみ <i>ε</i> f %						
圧	変形係数 <i>E</i> 50 MN/m ²						
縮							
	試験条件						
せ	$c kN/m^2$						
h							
床	有効応力						
EVI							
		+			+		
		+			+		
		+			+		
		+					
特記事	事項	1	L	L	1)	 石分を除いた75mm	∟ 未満の土質材料
					_/	に対する百分率で	表す。

^{[1}kN/m²≒0.0102kgf/cm²]

JGS

0 0 5 1

地盤材料の工学的分類

調査件名 汚泥再生処理センター建設に係る調査計画及び発注支援業務

試験年月日

2020年 11月 4日

試 験 者 杉本 敏郎

	試	料	番	号		B-1-2	B-1-5	B-1-7			
	(深	さ)		$(2.15 \sim 2.45 \text{m})$	$(5.15 \sim 5.45 \text{m})$	$(7.15 \sim 7.45 \text{m})$			
石	分	(75mm	以上)	%						
礫	分	$(2 \sim 7)$	'5mm)		%	39.1	11.6	43.2			
砂	分	(0.07	$75 \sim 2$	mm)	%	32.6	28.0	33.0			
細	粒 分	(0.07	′5mm≯	ト満)	%	28.3	60.4	23.8			
シル	・ト分	(0.00	$5 \sim 0$.075m	m)%	13.8	33.5	13.5			
粘:	土 分	(0.00)5mm≯	ト満)	%	14.5	26.9	10.3			
最	大	粒	径		mm	19	19	19			
均	等	係	数	Uc		1103.59	-	524.11			
液	性	限	界	w_{L}	%		35.8				
塑	性	限	界	w_{P}	%		19.3				
塑	性	指	数	$I_{\rm p}$			16.5				
L. A	t. I. I. Jol	- () >				細粒分質	礫まじり砂質粘土	細粒分質			
地盘	初料	の分割	類名			砂質礫	(低液性限界)	砂質礫			
分	類	記	号			(GFS)	(CLS-G)	(GFS)			
	例	記	号			0	0	●			

JIS	А	$1\ 2\ 0\ 4$	+	\mathcal{O}	秋宁	宦	₩ ↓	駩	(
JGS		$0\ 1\ 3\ 1$	⊥.	V	个业	皮	μų	闷火	(心化化加慎四/欧)

	調査件名	汚泥再生処理センタ	アー建設に係る調査計画及	なび発注支援業務	試験年月日	2020年 10月 20日
--	------	-----------	--------------	----------	-------	---------------

								試	験	者	杉本 敏郎	
試料番号	B-1-2		B-1-5			試	料	番	号		B-1-2	B-1-5
(深 さ)	$(2.15 \sim 2.$	45m)	$(5.15 \sim 5.$	45m)		(汐	ER.		さ)		$(2.15 \sim 2.45 \text{m})$	$(5.15 \sim 5.45 \text{m})$
	粒径㎜	通過質量百分率%	粒径mm	通過質量百分率%	粗	6	柴	分		%	0.0	0.0
	75		75		中	즅	<u>熊</u>	分		%	27.4	7.4
\$	53		53		細	즅	<u></u> 樂	分		%	11.7	4.2
	37.5		37.5		粗	石	少	分		%	11.4	4.2
Z	26.5		26.5		中	石	少	分		%	12.6	8.5
·2	19	100.0	19	100.0	細	石	少	分		%	8.6	15.3
	9.5	85.5	9.5	96.1	シ	ル	Ь	分		%	13.8	33.5
v ·	4.75	72.6	4.75	92.6	粘		E	分		%	14.5	26.9
~	2	60.9	2	88.4	2mm	nふるい	通過	質量	百分	率 %	60.9	88.4
分	0.850	49.5	0.850	84.2	425	5μmኤ	るい通	過質量	冒分	率 %	41.6	80.2
	0.425	41.6	0.425	80.2	75	μmふる	sい通i	過質量	百分	率 %	28.3	60.4
杤	0.250	36.9	0.250	75.7	最	大	粒	径		mm	19	19
	0.106	30.0	0.106	65.2	60	%	粒	径	D_{60}	mm	1.8761	0.0730
	0.075	28.3	0.075	60.4	50	%	粒	径	D_{50}	mm	0.8841	0.0340
	0.0511	27.1	0.0457	53.9	30	%	粒	径	$D_{\scriptscriptstyle 30}$	mm	0.1060	0.0067
ùt-	0.0362	26.0	0.0327	49.5	10	%	粒	径	D_{10}	mm	0.0017	
ИL	0.0230	24.3	0.0210	43.8	均	等	係	数	$U_{\rm c}$		1103.59	
降	0.0134	21.3	0.0123	37.0	曲		係	数	$U_{\rm c}^{\prime}$		3. 52	
	0.0095	18.8	0.0088	33.0	±	粒子	の密	度	ρ_{s}	g/cm ³	2. 755	2.871
分	0.0068	16.3	0.0063	29.3	使	用した	分散斉	IJ			ヘキサメタ燐酸ナトリウム飽和溶液	ヘキサメタ燐酸ナトリウム飽和溶液
析	0.0034	12.7	0.0032	22.9	溶	液濃度	,溶液	反添加]量		10m1	10m1
וער	0.0014	9.5	0.0013	17.5	20	%	粒	径	D_{20}	mm	0.0112	0.0022
					透	水	係	数		m/s	1. 40×10^{-7}	-

JIS	А	$1\ 2\ 0\ 4$	+	\mathcal{O}	秋子	库	₩ ↓	騇	(約径加積曲線)
JGS		$0\ 1\ 3\ 1$		v	<u>ጥሀ-</u>	反	日七人	闷欠	

調査件名	汚泥再生処理セン	ター建設に係る調	査計画及び発注支援業務	試験年月日	2020年 10月 20日

								試	験	者	杉本	敏郎	
試料番号	B-1-7					試	料	番	号		B-1-7		
(深 さ)	$(7.15 \sim 7.$	45m)				(深	1		さ)		(7.15~	-7.45m)	
	粒径mm	通過質量百分率%	粒径mm	通過質量百分率%	粗	矽	ы́к	分		%		0.0	
	75		75		中	砲	 終	分		%		27.8	
\$	53		53		細		 終	分		%		15.4	
	37.5		37.5		粗	配	 少	分		%		10.8	
z	26.5		26.5		中	矽	 少	分		%		13.1	
~J	19	100.0	19		細	矽	 少	分		%		9.1	
	9.5	86.9	9.5		シ	ル		分		%		13.5	
~	4.75	72.2	4.75		粘	Ŀ	_	分		%		10.3	
	2	56.8	2		2mm	ふるい	・通過	質量	百分	率 %		56.8	
分	0.850	46.0	0.850		425	μm ኤ	るい通	過質量	百分	率 %		38.2	
	0.425	38.2	0.425		75 μ	ιmふる	い通	過質量	百分	率 %		23.8	
析	0.250	32.9	0.250		最	大	粒	径		mm		19	
	0.106	26.0	0.106		60	%	粒	径	D_{60}	mm	2.	4633	
	0.075	23.8	0.075		50	%	粒	径	D_{50}	mm	1.	2002	
	0.0492	22.3			30	%	粒	径	D_{30}	mm	0.	1782	
<u></u>	0.0349	21.1			10	%	粒	径	D_{10}	mm	0.	0047	
XX.	0.0222	19.2			均	等	係	数	$U_{\rm c}$		52	4.11	
降	0.0129	16.1			曲	率	係	数	$U_{\rm c}^{\prime}$			2.74	
	0.0092	13.7			土;	粒 子	の密	「度	ρ_{s}	g/cm^3	2	. 929	
分	0.0065	11.6			使用	目した	分散剤	刖			ヘキサメタ燐酸ナ	トリウム飽和溶液	
15	0.0033	8.9			溶液	友濃度,	溶液	友添加	量			10ml	
171	0.0013	6.9			20	%	粒	径	D_{20}	mm	0.	0267]
					透	水	係	数		m/s	7.02	$\times 10^{-7}$]

JIS A	$1\ 2\ 0\ 5$	十の海州限界	,胡州限思封	·
IGS	0141		坐正限外两	、 例天 (时间天和 不)

援業務 試験年月日 2020年 10月 30日 -----

_ _ _ _ _

限界試験 含水比 w 35.2 35.4 35.7 36.0 36.5 37.3	% f	塑性限 含水比	界試 <u>w</u> 19. 19. 19.	:験 % 6 2 2	 液性限界 35. 塑性限界 19. 塑性指数 	w _L 8 w _p 3	%
济比 w 35.2 35.4 35.7 36.0 36.5 37.3	% f	含水比 	<i>w</i> 19. 19.	% 6 2 2	35. 塑性限界 19. 塑性指数	8 w _p 3 I _p	%
35. 2 35. 4 35. 7 36. 0 36. 5 37. 3			19. 19. 19.	6 2 2	塑性限界 19. 塑性指数	w_{p} 3 I_{p}	%
35. 4 35. 7 36. 0 36. 5 37. 3			19. 19.	2	19. 塑性指数	3 I p	
35. 7 36. 0 36. 5 37. 3			19.	2	塑性指数	I_{p}	
36. 0 36. 5 37. 3							
36.5 37.3					16.	5	
37.3							
深さ)							
液性限界試験			界試	験	液性限界	w_{L}	%
含水比 w	%	含水比	w	%			
					塑性限界	$w_{\scriptscriptstyle \mathrm{p}}$	%
					塑性指数	$I_{\rm p}$	
深さ)							
限界試験		塑性限	界試	験	液性限界	w_{L}	%
含水比 w	% 1	含水比	w	%			
					塑性限界	$w_{\scriptscriptstyle P}$	%
	w 乔 武 水 比 w 深 さ) 現 界 試験 査 水 比 w	水水 w % 育 水比 w % 育 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、	図 水比 w % 含 水比 w % 含 水比 w % 含 水比 w % 含 水比 w % 含 水比 w % 含 水比 w % 含 水比 w % 合 水比 w % 合 水比 w % や 、 、 、 、 、 、 、 、 、 、 、 、 、	型任限介訊 雪水比 w % 含水比 w 雪水比 w % 含水比 w 深さ) 現界試験 塑性限界試 雪水比 w % 含水比 w	型性限界試験 型性限界試験 室水比 w % 含水比 w %	型性限界試験 型性限界試験 液性限界 室水比 w % 含水比 w % 雪水比 w % 塑性限界 塑性服界 塑性服界 塑性服界 塑性服界 空化限界試験 塑性限界試験 資水比 w % 含水比 w % 含水比 w % 含水比 w %	型性限介試験 微性限介 WL 含水比 W % 含水比 W % 塑性限界 Wp 塑性限界 Wp 塑性指数 Ip 塑性指数 Ip 2 マンコン 環界試験 塑性限界試験 液性限界 WL 含水比 W % 含水比 W %

試料番号 (深さ)

液	生限界試驗	矣		塑性限	界試	験	液性限界	w_{L}	%
落下回数	含水比	w	%	含水比	w	%			
							塑性限界	$w_{\scriptscriptstyle \mathrm{p}}$	%
							塑性指数	$I_{\rm p}$	
							1		

特記事項

JIS	A 1202	+	来宁	了	\mathcal{O}	宓	宦	1, ≣	駩	(測定)	
T G S	0111		个1/-	1	V	石	皮	日本	闷火	(例だ)	

試 験 者 杉本 敏郎

Т

試 料 番 号 (深 さ)	B-1-2 (2.1	$5\sim 2.45$ m)		B-1-5 $(5.15 \sim 5.45m)$				
ピクノメーター No.	1	2	3	5	6	8		
(試料+蒸留水+ピクノメーター)の質量 加ь g	164. 547	163.337	163. 512	171.926	164.728	163. 547		
m をはかったときの内容物の温度 T $^{\circ}$ C	20.0	20.0	20.0	20.0	20.0	20.0		
T° における蒸留水の密度 $\rho_w(T)$ g/cm	0.99820	0.99820	0.99820	0.99820	0.99820	0.99820		
温度 f [°] Cの蒸留水を満たしたときの n^{1} (蒸留水+ピクノメーター)質量 m^{a} g	148.482	147.278	147.495	155.289	146.841	146.492		
容 器 No.								
試料の (炉乾燥試料+容器)質量g	25. 203	25.179	25.118	25.513	27.423	26.134		
炉乾燥質量 容 器 質 量 g								
m _s g	25.203	25.179	25.118	25.513	27.423	26.134		
土 粒 子 の 密 度 ρ _s g/cm	2.753	2.756	2. 755	2.869	2.871	2.873		
平均值ρ _s g/cm ²		2.755			2.871			
試 料 番 号 (深 さ)	B-1-7 (7.1	5~7.45m)						
ピクノメーター No.	9	10	11					
(試料+蒸留水+ピクノメーター)の質量 m bg	168.001	164.903	171.297					
m をはかったときの内容物の温度 T $^{\circ}$ C	20.0	20.0	20.0					
T° Cにおける蒸留水の密度 $\rho_w(T)$ g/cm	0.99820	0.99820	0.99820					
温度 T° Cの蒸留水を満たしたときの ¹⁾ (蒸留水+ピクノメーター)質量 m_{a} g	150.756	148.129	154.407					
容 器 No.								
試料の (炉乾燥試料+容器)質量g	26.163	25.454	25.615					
炉乾燥質量 容 器 質 量 g								
m_{s} g	26.163	25.454	25.615					
土粒子の密度 p _s g/cm ²	2. 928	2.927	2. 931					
平均值ρ _s g/cm ²		2.929						
試 料 番 号 (深 さ)								
ピクノメーター No.								
(試料+蒸留水+ピクノメーター)の質量 m bg								
m 応はかったときの内容物の温度 T $^{\circ}$ C								
T° における蒸留水の密度 $\rho_w(T)$ g/cm								
温度 T ℃の蒸留水を満たしたときの $m_{a}^{1)}$ (蒸留水+ピクノメーター)質量 m_{a}^{2} g								
容 器 No.								
試 料 の (炉乾燥試料+容器)質量g								
炉乾燥質量 容 器 質 量 g								
m _s g								

特記事項

平 均

土 粒 子 の 密 度 ρ_s

値 ρ_s

 g/cm^3

g/cm³

1) ピクノメーターの検定結果から求める。

$$\rho_{\rm s} = \frac{m_{\rm s}}{m_{\rm s} + (m_{\rm s} - m_{\rm b})} \times \rho_w(T)$$

調査件名 汚泥再生処理センター建設に係る調査計画及び発注支援業務 試験年月日 2020年 10月 21日
JIS	А	1	2	0	3	
IGS		0	1	2	1	

調査件名 汚泥再生処理センター建設に係る調査計画及び発注支援業務 試験年月日 2020年 10月 20日

試 験 者 杉本 敏郎

容器 No. 161 187 47 140 186 3 m_a g 79.51 79.57 80.62 82.56 82.70 82.69 m_b g 72.01 72.04 73.08 69.09 68.93 69.22 m_b g 18.83 19.29 19.98 19.31 18.85 19.52 w % 14.1 14.3 14.2 27.1 27.5 27.1 平均値 w % 14.2 27.2 27.2 27.2	試料番号 (深さ)	B-1-2 (2.15	~2.45m)		B-1-5 (5.15∼	~5.45m)	
m_{*} g79.5179.5780.6282.5682.7082.69 m_{b} g72.0172.0473.0869.0968.9369.22 m_{c} g18.8319.2919.9819.3118.8519.52 w %14.114.314.227.127.527.1 Ψ bit w %14.227.227.227.227.2	容器 No.	161	187	47	140	186	3
mb g 72.01 72.04 73.08 69.09 68.93 69.22 mc g 18.83 19.29 19.98 19.31 18.85 19.52 w % 14.1 14.3 14.2 27.1 27.5 27.1 平均値 w % 14.2 27.2 27.2	m _a g	79.51	79.57	80.62	82.56	82.70	82.69
mage g 18.83 19.29 19.98 19.31 18.85 19.52 w % 14.1 14.3 14.2 27.1 27.5 27.1 平均値 w % 14.2 27.2 27.2	m₅ g	72.01	72.04	73.08	69.09	68.93	69. 22
w % 14.1 14.3 14.2 27.1 27.5 27.1 平均値w% 14.2 27.2 </td <td>m₀ g</td> <td>18.83</td> <td>19.29</td> <td>19.98</td> <td>19.31</td> <td>18.85</td> <td>19.52</td>	m₀ g	18.83	19.29	19.98	19.31	18.85	19.52
平均值 w % 14.2 27.2	<i>w</i> %	14.1	14.3	14.2	27.1	27.5	27.1
	平均值 w %		14.2			27.2	
特記事項	特記事項						

試料番号(浴	采さ)	B-1-7 (7.15	\sim 7.45m)			
容器 No.		179	189	141		
m _a	g	87.66	87.81	87.50		
m _b	g	79.35	79.52	79.15		
m.	g	19.19	19.37	19.20		
w	%	13.8	13.8	13.9	 	
平均值 w	%		13.8			
特記事	項					

試料番号 (深さ)				
容 器 No.				
ma g				
m _b g				
m₀ g				
w %	 	 		
平均值 w %				
特記事項				

試料番号 (深さ)					
容器 No.					
ma g					
mb g				[
m₀ g	[[
w %					
平均值 w %					
特記事項					

試料番号 (深さ)			
容器 No.			
ma g		 	
m₅ g			
m₀ g		 	
%			
平均值 w %			
特記事項			

 $w = rac{m_{ ext{a}} - m_{ ext{b}}}{m_{ ext{b}} - m_{ ext{c}}} imes 100$ $m_{ ext{a}} : (試料+容器)質量$ $m_{ ext{b}} : (炉乾燥試料+容器)質量$ $m_{ ext{c}} : 容器質量$

土質試験結果一覧表(基礎地盤)

調査件名 汚泥再生処理センター建設に係る調査計画及び発注支援業務

整理年月日 2020年 11月 4日

整理担当者 杉本 敏郎

諸	計 料 番 号	B-2-1	B-2-7			
((深 さ)	$(1.15 \sim 1.45 \text{m})$	$(7.15 \sim 7.45 \text{m})$			
	湿 潤 密 度 ρ _t g/cm ³			 		
_	乾燥密度ρd g/cm³			 		
	土粒子の密度 $ ho_{s}$ g/cm 3	2. 780	2.760	 		
	自然含水比 ω。 %	19.8	12.6	 		
般	間 隙 比 e			 		
	飽 和 度 S _r %					
	石 分 (75mm以上) %			 		
164	礫 分 ¹⁾ (2~75mm) %	38.7	28.2	 		
不业.	砂 分 ¹⁾ (0.075~2mm) %	27.3	40.5	 		
	シルト分 ¹¹ (0.005~0.075mm) %	18.0	17.0	 		
	粘土分"(0.005mm稿)%	16.0	14.3	 		
	最大粒径 mm	19	19	 		
度		1694.20	386.36	 		
	50%粒径 <i>D</i> 50mm	0. 4624	0. 3931	 		
=	· 法 州· 四 田 0/	00.0				
ンシュ		38.9		 		
ヘテン	型 住 IK 外 Wp 70	23.6		 		
シー特		10. 5		 		
性ハ	地般材料の	細粒公質	細粒公質			
芀	出 温 初 相 。 分 類 名	加拉力員 动哲磁	^{本位} 力員 磁哲动			
類	分類記号	(GFS)	<u>(SFG)</u>	 		
	試験方法	(01.0)	(61.0)			
圧	压縮指数 <i>C</i> 。			 		
密				 		
щ				 		
_	一軸圧縮強さ q _u kN/m ²					
軸	破壊ひずみ <i>E</i> f %					
圧	変形係数 <i>E</i> 50 MN/m ²					
彩白						
	試験条件			 		
せ	全 応 力			 		
h	φ °			 		
, 0				 		
断	φ′°			 		
特記画	事項			1) Z		未満の上質な影
				1) 11 [2	対する百分率で	表す。

[1kN/m²≒0.0102kgf/cm²]

JGS

0051

地盤材料の工学的分類

調査件名 汚泥再生処理センター建設に係る調査計画及び発注支援業務

試験年月日

試 験 者

2020年 11月 4日

杉本 敏郎 試 料 号 番 B-2-1 B-2-7 (深 さ) $(1.15 \sim 1.45 \text{m})$ $(7.15 \sim 7.45 \text{m})$ 石 分(75mm以上) % 38.7礫 分(2~75mm) % 28.2砂 分(0.075~2mm) % 27.3 40.5細粒分(0.075mm未満) % 34.031.3 シルト分(0.005~0.075mm)% 18.0 17.0粘 土 分(0.005mm未満) % 16.0 14.3最 大 粒 径 19 19 mm 均 等 係 数 U。 1694.20 386.36 界 🐠 液 性 限 % 38.9 % 塑 性 限 界 w_{P} 23.6 塑 性 指 数 Ip 15.3細粒分質 細粒分質 地盤材料の分類名 砂質礫 礫質砂 号 (GFS) (SFG) 分 類 記

JIS	А	$1\ 2\ 0\ 4$	+	\mathcal{O}	水宁	宦	1	駩	(約亿加
JGS		$0\ 1\ 3\ 1$	<u> </u>	VJ	个业	皮	日七	闷火	(心化化加加)

	調査件名	汚泥再生処理セン	ター建設に係る調査計画及	び発注支援業務	試験年月日	2020年 10月 20日
--	------	----------	--------------	---------	-------	---------------

					-			試	騻	右	杉本 敏郎	
試料番号	B-2-1		B-2-7			試	料	番	号		B-2-1	B-2-7
(深 さ)	$(1.15 \sim 1.$	45m)	$(7.15 \sim 7.$	45m)		(深	ŧ		さ)		$(1.15 \sim 1.45 m)$	$(7.15 \sim 7.45 \text{m})$
	粒径㎜	通過質量百分率%	粒径mm	通過質量百分率%	粗	磱	Ŕ	分		%	0.0	0.0
	75		75		中	磱	Ŕ	分		%	32.8	15.2
\$	53		53		細	磱	Ŕ	分		%	5.9	13.0
	37.5		37.5		粗	矽	b	分		%	6.5	11.8
ろ	26.5		26.5		中	矽	b	分		%	10.2	15.3
2	19	100.0	19	100.0	細	矽	b	分		%	10.6	13.4
1.5	9.5	74.1	9.5	92.4	シ	ル	\mathbb{P}	分		%	18.0	17.0
v .	4.75	67.2	4.75	84.8	粘	Ŧ	:	分		%	16.0	14.3
~	2	61.3	2	71.8	2mm	ふるい	通過	質量	百分	率 %	61.3	71.8
ゴ	0.850	54.8	0.850	60.0	425	µmኤ	るい通	過質量	目 百分	率 %	49.3	51.0
15	0.425	49.3	0.425	51.0	75 µ	umふる	い通i	過質量	百分	率 %	34.0	31.3
矿	0.250	44.6	0.250	44. 7	最	大	粒	径		mm	19	19
	0.106	36.9	0.106	34.8	60	%	粒	径	D_{60}	mm	1.6942	0.8500
	0.075	34.0	0.075	31.3	50	%	粒	径	D_{50}	mm	0.4624	0. 3931
	0.0514	31.3	0.0509	28.3	30	%	粒	径	D_{30}	mm	0.0421	0.0642
ù t r	0.0365	29.1	0.0362	26.0	10	%	粒	径	D_{10}	mm	0.0010	0.0022
<i>i</i> L	0.0232	26.4	0.0230	23.6	均	等	係	数	$U_{\rm c}$		1694.20	386.36
降	0.0135	23.0	0.0134	20.5	曲	率	係	数	U_{\circ}'		1.05	2.20
	0.0096	20.4	0.0095	18.5	土	粒子	の密	度	ρ_{s}	g/cm ³	2.780	2. 760
分	0.0068	17.8	0.0068	16.3	使月	用したタ	分散斉	IJ			ヘキサメタ燐酸ナトリウム飽和溶液	ヘキサメタ燐酸ナトリウム飽和溶液
析	0.0034	14.2	0.0034	12.1	溶液	夜濃度,	溶液	反添加]量		10m1	10m1
ועי	0.0014	10.7	0.0014	8.4	20	%	粒	径	D_{20}	mm	0.0092	0.0123
					诱	7k	係	数		m/s	9 30 \times 10 ⁻⁸	1.73×10^{-7}

JIS A	$1\ 2\ 0\ 5$	十の液性限界	•	朔性限界試驗	(試驗結里)
JGS	$0\ 1\ 4\ 1$			至口限外的族	

支援業務 試験年月日 2020年 10月 29日 -----

_ _ _ _ _ _ _ _ _

丑

×

試料番号	(深さ) B-2-1	$(1.15 \sim 1.45 \text{m})$	
液	生限界試験	塑性限界試験	液性限界 ω」%
落下回数	含水比 w %	含水比 w %	38.9
39	37.4	23.8	塑性限界 ω, %
32	38.1	23.6	23.6
27	38.7	23.5	塑性指数 I,
20	39.7		15.3
14	40.8		
8	42.8		
試料番号	(深さ)		
液	生限界試験	塑性限界試験	液性限界 ω. %
落下回数	含水比 w %	含水比 w %	
			塑性限界 w_{p} %
			塑性指数 I,

試料番号 (深さ)

液	生限界試驗	贠		塑性限	験	液性限界	$w_{\text{\tiny L}}$	%	
落下回数	含水比	w	%	含水比	w	%			
							塑性限界	$w_{\scriptscriptstyle \mathrm{p}}$	%
							塑性指数	$I_{\rm p}$	

試料番号 (深さ)

液	生限界試驗	贠	塑性限	界試験	液性限界	w_{L}	%
落下回数	含水比	w %	含水比	w %			
					塑性限界	$w_{\scriptscriptstyle P}$	%
	[塑性指数	$I_{\rm p}$	
			-				
			-				

特記事項

JIS	А	$1\ 2\ 0\ 2$	+	举行	ユ	\mathcal{O}	宓	宦	뉴들	駩	(測定)	
JGS		$0\ 1\ 1\ 1$	⊥.	<u>117</u>	1	v	冚	反	DT/	闷失		

Т

			試	験 者 杉	本 敏郎	
試料番号(深さ)	B-2-1 (1.1	$5 \sim 1.45$ m)		B-2-7 (7.1	5~7.45m)	
ピクノメーター No.	12	13	14	15	16	19
(試料+蒸留水+ピクノメーター)の質量 m b g	165. 787	166.859	171.436	172.055	170.960	171.941
m をはかったときの内容物の温度 T $^{\circ}$ C	20.0	20.0	20.0	20.0	20.0	20.0
T℃における蒸留水の密度 ρ _w (T)g/cm ³	0.99820	0.99820	0.99820	0.99820	0. 99820	0.99820
温度 <i>T</i> ℃の蒸留水を満たしたときの ¹⁾ (蒸留水+ピクノメーター)質量 <i>m</i> ^a g	150.043	150.750	155. 413	155.143	154. 703	155.908
容器No.						
試 料 の (炉乾燥試料+容器)質量g	24. 563	25.131	25.008	26.495	25.469	25.120
炉乾燥質量 容 器 質 量 g						
m_s g	24. 563	25.131	25.008	26.495	25.469	25.120
<u>土 粒 子 の 密 度 ρ_s g/cm³</u>	2.780	2.781	2. 778	2.760	2.760	2.759
平均值 ρ_{s} g/cm ³		2.780			2.760	
試料番号(深さ)						
ピクノメーター No.						
(試料+蒸留水+ピクノメーター)の質量 $m_{ m b}$ g						
m をはかったときの内容物の温度 T $^{\circ}$ C						
T℃における蒸留水の密度 ρ _w (T)g/cm ³						
温度プ℃の蒸留水を満たしたときの ¹⁾ (蒸留水+ピクノメーター)質量 m ^a g						
容 器 No.						
試 料 の (炉乾燥試料+容器)質量g						
炉乾燥質量 容 器 質 量 g						
$m_{ m s}$ g						
土 粒 子 の 密 度 $ ho_{s}$ g/cm ³						
平均值 ρ_s g/cm ³						
試料番号(深さ)						
ピクノメーター No.						
(試料+蒸留水+ピクノメーター)の質量 m ь g						
m をはかったときの内容物の温度 T $^{\circ}$ C						
T [°] Cにおける蒸留水の密度 ρ _w (T)g/cm ³						
温度 <i>T</i> ℃の蒸留水を満たしたときの ¹⁾ (蒸留水+ピクノメーター)質量 <i>m</i> ^a g						
容 器 No.						
試 料 の (炉乾燥試料+容器)質量g						
炉乾燥質量 容 器 質 量 g						
m _s g						
土 粒 子 の 密 度 ρ _s g/cm ³						
平均值 ρ_{s} g/cm ³				I		

特記事項

1) ピクノメーターの検定結果から求める。

- -

$$\rho_{s} = \frac{m_{s}}{m_{s} + (m_{s} - m_{b})} \times \rho_{w}(T)$$

調査件名 汚泥再生処理センター建設に係る調査計画及び発注支援業務 試験年月日 2020年 10月 21日 _____

J	ΙS	5	А	1	2	0	3	
T	G	S		0	1	2	1	

調査件名 汚泥再生処理センター建設に係る調査計画及び発注支援業務 試験年月日 2020年 10月 20日

					試験	者 杉本 敏郎	
試料番号(深る	き) B-2-1	(1.15	~1.45m)		B-2-7 (7.15	~7.45m)	
容 器 No.		14	181	13	40	114	139
m a a	g 61	1.26	61.20	61.41	82.48	82.32	82.81
<i>т</i> ь н	g 54	4.48	54.12	54.44	75.55	75.16	75.59
<i>m</i> .c	g 19	9.64	18.96	19.46	19.11	19.30	18.79
11)	%	19.5	20 1	19.9	12.3	12.8	12.7
亚均值 "" "	%	101.0	19.8	1010	10.0	12.0	10. 1
生 記 車 1	百		15.0			12.0	
4 記 争 ,	久						
式料番号(深:	±)						
字器 No.							
	σ					+	
	~					+	
Пιь	Б					+	
m_{\circ}	g 					+	
w 9	%o						
4均值 w 9	%						
手記 事 1	頁						
					1		
(料番号 (深る	さ)						
译器 No.							
m.	g						
<i>т</i> ь	g						
<i>m</i> .c	g					+	
11)	~ %					+	
乙均值 11 (%						
	石						
	又						
4. 四五日(流、	51						
4科香方(徐る	2)						
系器 No.							
<i>m</i> a a	g						
m b	g						
m_{\circ}	g						
w	%						
Z均值 w S	%	ľ				1 I	
身 記 事 I	頁						
(深る)	さ)						
·器 No.							
						+	
II La	5 	·				+	
<i>т</i> ь	Б					+	
m.	g						
w	%						
Z均值 w S	%						
	-				1		

m。:容器質量

土質試験結果一覧表(基礎地盤)

調査件名 汚泥再生処理センター建設に係る調査計画及び発注支援業務

整理年月日 2020年 11月 4日

_ _ _ _ _ _ _ _ _

整理担当者 杉本 敏郎

試	、料番号	B-3-1	B-3-2				
((深 さ)	$(1.15 \sim 1.45 \text{m})$	$(2.15 \sim 2.45 \text{m})$				
	湿 潤 密 度 ρ _t g/cm ³						
_	乾燥密度 ρd g/cm³						
	土粒子の密度 ρ _s g/cm ³	2.726	2.716				
	自然含水比 <i>w</i> ⁿ %	10.5	13.3				
般							
		27.0					
粒	候 \mathcal{T} (2~73mm) %	37.9	30. Z				
	49 55 (0.075-2mm) % シルト分 ¹⁾ (0.005~0.075mm) %	12 1	16.8				
	粘十分 ¹⁾ (0, 005mm繊) %	11 7	14.6				
	最大粒径 mm	19	19				
庋	均等係数 U。	624.89	694.13				
1×	50%粒径 <i>D50</i> mm	0.8698	0. 5006				
コン	液性限界 wi %						
ンステ	塑性限界 w。 %						
ンシー	塑性指数 I _p						
· 特 性							
分	地盤材料の	細粒分質	細粒分質				
類	分類名	礫質砂	礫質砂				
	分類記号	(SFG)	(SFG)				
圧							
	/上 和 和 致 C。						
依							
省							
	一軸圧縮強さ q _u kN/m ²						
軸	破壊ひずみ <i>ε</i> f %						
圧	変形係数 <i>E</i> 50 MN/m ²						
稻							
	試験条件						
せ	全 応 力 <u> c kN/m²</u>						
h	φ °						
	│ 有効応力						
断	φ΄ ΄						
				+			
				+			
		+					
				+			
特記事	L 事項				1) 7	L G分を除いた75mm	
					-, ,	こ対する百分率で	表す。

^{[1}kN/m²≒0.0102kgf/cm²]

JGS

0051

地盤材料の工学的分類

調査件名 汚泥再生処理センター建設に係る調査計画及び発注支援業務

試験年月日

2020年 11月 4日

試 験 者 杉本 敏郎

	試	料	番	号		B-3-1	В-3-2			
	(深	さ)		$(1.15 \sim 1.45 \text{m})$	$(2.15 \sim 2.45 \text{m})$			
石	分	(75mm	以上)	%					
礫	分	$(2 \sim 7)$	5mm)		%	37.9	30.2			
砂	分	(0.07	$5 \sim 2$	mm)	%	38.3	38.4			
細光	立分	(0.07	5mm∋	ト満)	%	23.8	31.4	 		
シル	ト分	(0.00	$5 \sim 0$.075m	m)%	12.1	16.8			
粘土	L 分	(0.00	5mm∋	ト満)	%	11.7	14.6	 		
	大	粒	径		mm	19	19	 		
均	等	係	数	Uc		624.89	694.13			
液	性	限	界	w_{L}	%					
塑	性	限	界	w_{P}	%			 		
塑	性	指	数	$I_{\rm p}$				 		
LL AL	LIND	- () >				細粒分質	細粒分質			
地盤	材料	の分裂	顛名			礫質砂	礫質砂			
分	類	記	号			(SFG)	(SFG)			
凡	例	記	号			0	0	 		

JIS	А	$1\ 2\ 0\ 4$	+	\mathcal{O}	來宁	宦	1	駩	(約亿加
JGS		$0\ 1\ 3\ 1$	<u> </u>	VJ	个业	皮	日七	闷火	(心化化加加)

	調査件名	汚泥再生処理セン	ター建設に係る調査計画及	び発注支援業務	試験年月日	2020年 10月 20日
--	------	----------	--------------	---------	-------	---------------

					_			試	験	省	杉本 敏郎	
試料番号	B-3-1		B-3-2			試	料	番	号		B-3-1	B-3-2
(深 さ)	$(1.15 \sim 1.$	45m)	$(2.15 \sim 2.$	45m)		(沼	Ř		さ)		$(1.15 \sim 1.45 \text{m})$	$(2.15 \sim 2.45 \text{m})$
	粒径㎜	通過質量百分率%	粒径㎜	通過質量百分率%	粗	즅	樂	分		%	0.0	0.0
	75		75		中	즅	<u>樂</u>	分		%	24.2	17.0
Ś	53		53		細	즅	樂	分		%	13.7	13.2
	37.5		37.5		粗	石	少	分		%	12.4	12.7
7	26.5		26.5		中	石	少	分		%	14.5	14.5
.2	19	100.0	19	100.0	細	石	少	分		%	11.4	11.2
1.5	9.5	87.5	9.5	94.5	シ	ル	Ъ	分		%	12.1	16.8
v .	4.75	75.8	4.75	83.0	粘	=	E.	分		%	11.7	14.6
~	2	62.1	2	69.8	2mm	ふるい	・通過	質量	百分	率 %	62.1	69.8
ゴ	0.850	49.7	0.850	57.1	425	$5\mu\mathrm{m}$ Å	るい通	過質量	し 百分	率 %	41.2	48.1
	0. 425	41.2	0. 425	48.1	75,	u m ふる	らい通i	過質量	百分	率 %	23.8	31.4
朳	0.250	35.2	0.250	42.6	最	大	粒	径		mm	19	19
	0.106	26.8	0.106	34.3	60	%	粒	径	$D_{\rm 60}$	mm	1.7497	1.0412
	0.075	23.8	0.075	31.4	50	%	粒	径	$D_{\rm 50}$	mm	0.8698	0.5006
	0.0517	21.9	0.0509	28.7	30	%	粒	径	$D_{\scriptscriptstyle 30}$	mm	0.1493	0.0615
<u>)</u>	0.0367	20.7	0.0362	26.2	10	%	粒	径	$D_{\scriptscriptstyle 10}$	mm	0.0028	0.0015
<i>D</i> L	0.0233	18.8	0.0231	23.4	均	等	係	数	$U_{\rm c}$		624.89	694.13
降	0.0135	16.3	0.0134	20.0	曲	率	係	数	$U_{\rm c}^{\prime}$		4.55	2.42
	0.0096	14.4	0.0096	17.9	土	粒 子	の密	「度	$ ho_{s}$	g/cm^3	2.726	2.716
分	0.0068	12.7	0.0068	16.1	使用	用した	分散剤	 1j			へキサメタ燐酸ナトリウム飽和溶液	ヘキサメタ燐酸ナトリウム飽和溶液
<u>+</u> E	0.0034	10.4	0.0034	12.8	溶	夜濃度	,溶液	友添力	量		10m1	10m1
ועז	0.0014	8.3	0.0014	9.8	20	%	粒	径	D_{20}	mm	0.0308	0.0134
		[1			诱		係	数		m/s	9.22 $\times 10^{-7}$	2.05×10^{-7}

JIS	А	$1\ 2\ 0\ 2$	_	- 本子	了	\mathcal{O}	宓	宦	남 重	駩	(測定)	
JGS		$0\ 1\ 1\ 1$		· <u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	1	v	征	反	Цт./	闷火		

調査件名 汚泥再生処理センター建設に係る調査計画及び発注支援業務 試験年月日 2020年 10月 23日

 試験者 杉本 敏郎

 試料番号(深さ)
 B-3-1 (1.15~1.45m)

 B-3-2 (2.15~2.45m)

 ビクノメーターNo.
 1

 3
 5

 6
 8

ピクノメーター No.	1	3	5	6	8	9
(試料+蒸留水+ピクノメーター)の質量 m _b g	164. 594	163.676	171. 594	163.045	163.023	167.518
m をはかったときの内容物の温度 T $^{\circ}$ C	21.0	21.0	21.0	21.0	21.0	21.0
$T^{\mathbb{C}}$ における蒸留水の密度 $\rho_w(T)$ g/cm	³ 0. 99799	0.99799	0.99799	0.99799	0.99799	0.99799
温度 T^{C} の蒸留水を満たしたときの m_{a}^{1} g (蒸留水+ピクノメーター)質量 m_{a}^{2} g	148.460	147.474	155. 267	146.820	146.471	150.734
容器 No.						
試料の (炉乾燥試料+容器)質量g	25. 464	25.547	25. 751	25.651	26.169	26.529
炉乾燥質量 容 器 質 量 g						
m_s g	25.464	25.547	25. 751	25.651	26.169	26.529
土 粒 子 の 密 度 ρ _s g/cm	³ 2.724	2.728	2.727	2.716	2.716	2.717
平均值 ρ_s g/cm	3	2.726			2.716	
試料番号(深さ)						
ピクノメーター No.						
(試料+蒸留水+ピクノメーター)の質量 m _b g						
m をはかったときの内容物の温度 T $^{\circ}$ C						
T° Cにおける蒸留水の密度 $\rho_{w}(T)$ g/cm	3					
温度 I Cの蒸留水を滴にしたときの D (蒸留水+ピクノメーター)質量 M_a g						
容器No.						
試料() (炉乾燥試料+容器)質量g						
炉乾燥質量 容 器 質 量 g						
m_s g						
土 粒 子 の 密 度 ρ _s g/cm	3					
平均值 $ ho_s$ g/cm	3					
試料番号(深さ)						
ピクノメーター No.						
(試料+蒸留水+ピクノメーター)の質量 m ь g						
m をはかったときの内容物の温度 T $^{\circ}$ C						
T° における蒸留水の密度 $\rho_{u}(T)g/cm$	3					
容器 No.						
炉乾燥質量 容 器 質 量 g						
m.s. g						
土 粒 子 の 密 度 ρ _s g/cm	3					
平均值 ρ_s g/cm	3					

特記事項

1) ピクノメーターの検定結果から求める。

$$\rho_{s} = \frac{m_{s}}{m_{s} + (m_{a} - m_{b})} \times \rho_{w}(T)$$

J	ΙS	А	1	2	0	3	
Т	G S		0	1	2	1	

調査件名 汚泥再生処理センター建設に係る調査計画及び発注支援業務 試験年月日 2020年 10月 20日

試 験 者 杉本 敏郎

m。:容器質量

試料番号 (深さ)	B-3-1 (1.15∼	1.45m)		B-3-2 (2.15∼	-2.45m)	
容 器 No.	44	2	24	151	102	104
ma g	83.55	83.20	83.94	63.84	63.79	63.40
m₅ g	77.27	77.37	77.72	58.67	58.55	58.25
m₀ g	19.33	19.72	19.51	19.37	19.52	19.32
w %	10.8	10.1	10.7	13.2	13. 4	13.2
平均值 w %		10.5		I	13. 3	
特記事項						
			·			
試料番号 (深さ)						
容器 No.						
ma g						
m₅ g						
m₀ g						
<i>w</i> %						
平均值 w %						
特記事項						
試料番号(深さ)						
容器 No.						
ma g						
m₅ g						
m∘ g						
<i>w</i> %						
平均值 w %						
特記事項						
試料番号(深さ)						
容器 No.						
ma g						
m₅ g						
m₀ g						
<i>w</i> %						
平均值 w %						
特記事項						
試料番号(深さ)						
容器 No.						
ma g						
m₅ g						
m. g						
<i>w</i> %						
半均值 w %						
符 記 事 項						
				$w = rac{m_{\scriptscriptstyle extsf{a}} - m_{\scriptscriptstyle extsf{b}}}{m_{\scriptscriptstyle extsf{b}} - m_{\scriptscriptstyle extsf{c}}} imes$	100 <i>m</i> a:(試料+ <i>m</i> b:(炉乾燌	-容器)質量 發試料+容器)質量

土質試験結果一覧表(基礎地盤)

調査件名 汚泥再生処理センター建設に係る調査計画及び発注支援業務

整理年月日 2020年 11月 4日 _ _ _ _ _ _ _ _ _

整理担当者 杉本 敏郎

斌)	、料番号 (深さ)	B-4-2 (2.15 \sim 2.45m)	B-4-5 (5.15~5.45m)			
	湿潤密度ρ _t g/cm ³					
	乾燥密度ρ _d g/cm ³	0.710	0.704			
	工 私 于 の 密 度 ρ _s g/cm 白 伏 今 水 比 … %	2.718	13.3			
南几		9.3	10. 0			
用又	飽和度 <i>S</i> _r %					
	石 分 (75mm以上) %					
	礫 分 ¹⁾ (2~75mm)%	52.3	50.9			
粒	砂 分 ¹⁾ (0.075~2mm)%	28.4	31.8			
	シルト分 ¹⁾ (0.005~0.075mm) %	9.7	8.0			
	粘土分 ¹⁾ (0.005mm糒)%	9.6	9.3			
	最大粒径 mm	19	19			
度		604.26	520. 23			
	50%粒径 <i>D</i> 50mm	2. 2571	2. 1008			
=	液性限界10.%					
シシス						
テンシ						
十特性						
分	地盤材料の	細粒分質	細粒分質			
*5	分類名	砂質礫	砂質礫			
	分類記号	(GFS)	(GFS)			
	試験方法					
庄.	圧縮指数 <i>C</i> 。					
	上密降伏応刀 p。kN/m²					
密						
	一軸圧縮強さ a kN/m ²					
一軸	破壊ひずみ ϵ_f %					
圧	変形係数 E ₆₀ MN/m ²					
縮						
	試 験 条 件					
せ						
<i>b</i> .						
, 0	│ 有効応力					
断	φ, ∘					
				+		
				+		
				+		
特記	事項	1		11	1) そ に	 未満の土質材料 表す。

[1kN/m²≒0.0102kgf/cm²]

JGS

0051

地盤材料の工学的分類

調査件名 汚泥再生処理センター建設に係る調査計画及び発注支援業務

試験年月日

試 験 者

2020年 11月 4日

杉本 敏郎 試 料 号 番 B-4-2 B-4-5 (深 さ) $(2.15 \sim 2.45 \text{m})$ (5.15∼5.45m) 石 分(75mm以上) % 礫 分(2~75mm) % 52.350.9 砂 分(0.075~2mm) % 28.431.8 細粒分(0.075mm未満) % 19.3 17.3 シルト分(0.005~0.075mm)% 9.7 8.0 粘 土 分(0.005mm未満) 9.3 % 9.6 最 大 粒 径 19 19 mm 均 等 係 数 U。 604.26 520.23 界 *w*1 液 性 限 % 界 w 塑 性 限 % 塑 性 指 数 Ip 細粒分質 細粒分質 地盤材料の分類名 砂質礫 砂質礫 号 (GFS) (GFS) 分 類 記

JIS	А	$1\ 2\ 0\ 4$	+	\mathcal{O}	來宁	宦	1	駩	(約亿加
JGS		$0\ 1\ 3\ 1$	<u> </u>	VJ	个业	皮	日七	闷火	(心化化加加)

調査件名 汚泥冉生処埋センター建設に係る調査計画及び発注文援業務 試験牛月日 2020年 10月 20	調査件名	汚泥再生処理センタ	'ー建設に係る調査計画別	ひ死注支援業務	試験年月日	2020年 10月 201
---	------	-----------	--------------	---------	-------	---------------

								試	騻	右	杉本 敏郎	
試料番号	B-4-2		B-4-5			試	料	番	号		B-4-2	B-4-5
(深 さ)	$(2.15 \sim 2.$	45m)	(5.15~5.	45m)		(深	ŧ		さ)		$(2.15 \sim 2.45 \text{m})$	$(5.15 \sim 5.45m)$
	粒径mm	通過質量百分率%	粒径mm	通過質量百分率%	粗	礡	ě	分		%	0.0	0.0
	75		75		中	礡	ě	分		%	31.9	32.6
\$	53		53		細	礡	ě	分		%	20.4	18.3
	37.5		37.5		粗	矽	b 	分		%	11.4	12.6
7	26.5		26.5		中	矽	b	分		%	10.2	11.5
2	19	100.0	19	100.0	細	矽	b	分		%	6.8	7.7
1.5	9.5	86.5	9.5	83.6	シ	ル	Ь	分		%	9.7	8.0
v .	4.75	68.1	4.75	67.4	粘	Ŧ		分		%	9.6	9.3
~	2	47.7	2	49.1	2mm	ふるい	通過	質量	百分	率 %	47.7	49.1
ゴ	0.850	36.3	0.850	36.5	425	μ m δ^2	るい通	過質量	目 百分	率 %	30.0	29.4
1.5	0.425	30.0	0. 425	29.4	75 µ	umふる	い通道	日質量	百分	率 %	19.3	17.3
矿	0.250	26.1	0.250	25.0	最	大	粒	径		mm	19	19
	0.106	20.8	0.106	19.0	60	%	粒	径	D_{60}	mm	3. 5047	3. 4335
	0.075	19.3	0.075	17.3	50	%	粒	径	$D_{\rm 50}$	mm	2.2571	2.1008
	0.0521	18.6	0.0528	16.4	30	%	粒	径	$D_{\scriptscriptstyle 30}$	mm	0.4250	0.4545
) de	0.0370	17.6	0.0374	15.5	10	%	粒	径	D_{10}	mm	0.0058	0.0066
<i>i</i> L	0.0235	16.2	0.0237	14. 7	均	等	係	数	$U_{\rm c}$		604.26	520.23
降	0.0136	13.8	0.0137	12.8	曲	率	係	数	$U_{\rm c}^{\prime}$		8.89	9.12
	0.0097	12.1	0.0097	11.3	土	粒子	の 密	度	ρ_{s}	g/cm^3	2.718	2. 734
分	0.0069	10.4	0.0069	10.1	使月	用したタ	分散剤	IJ			ヘキサメタ燐酸ナトリウム飽和溶液	ヘキサメタ燐酸ナトリウム飽和溶液
柘	0.0035	8.8	0.0035	8.4	溶液	夜濃度,	溶液	反添加]量		10m1	10m1
171	0.0014	7.3	0.0014	6.7	20	%	粒	径	D_{20}	mm	0.0913	0.1240
		[-	诱	 7k	係			m/s	1.45×10^{-5}	2.84×10^{-5}

JIS	А	$1\ 2\ 0\ 2$	+-	来宁	工.	\mathcal{O}	宓	┏	, 문	睦	(測定)	
JGS		$0\ 1\ 1\ 1$	<u> </u>	个业	1	V	石	皮	日本	闷火		

調査件名 汚泥再生処理センター建設に係る調査計画及び発注支援業務 試験年月日 2020年 10月 23日

- - -

試 験 者 杉本 敏郎

試料番号(深さ)	B-4-2 (2.1	$5 \sim 2.45$ m)		B-4-5 (5.1	$5 \sim 5.45$ m)	
ピクノメーター No.	10	11	12	14	15	16
(試料+蒸留水+ピクノメーター)の質量 加。g	165. 165	170. 283	166. 376	171.452	171.419	170.622
m をはかったときの内容物の温度 T $^{\circ}$ C	21.0	21.0	21.0	21.0	21.0	21.0
T° Cにおける蒸留水の密度 $ ho_w(T)$ g/cm ³	0.99799	0.99799	0.99799	0.99799	0.99799	0.99799
温度 T^{C} の蒸留水を満たしたときの ¹⁾ (蒸留水+ピクノメーター)質量 M° g	148.108	154.384	150.022	155. 391	155.121	154.680
容器No.						
試 料 の (炉乾燥試料+容器)質量g	26.957	25.126	25.842	25.293	25.668	25.102
炉乾燥質量 容 器 質 量 g						
m _s g	26.957	25.126	25.842	25.293	25.668	25.102
土 粒 子 の 密 度 ρ_s g/cm ³	2.717	2.718	2.718	2.734	2.734	2.735
平均值 ρ_s g/cm ³		2.718			2.734	
武料番号(深さ)						
ピクノメーター No.						
(試料+蒸留水+ピクノメーター)の質量 <i>m</i> ь g						
m 応はかったときの内容物の温度 T $^{\circ}$ C						
T° Cにおける蒸留水の密度 $\rho_w(T)$ g/cm ³						
温度T [•] Cの蒸留水を満たしたときの ¹⁾ (蒸留水+ピクノメーター)質量 M ^a g						
容器 No.						
試 料 の (炉乾燥試料+容器)質量g						
炉乾燥質量 容 器 質 量 g						
m_{s} g						
土 粒 子 の 密 度 $ ho_s$ g/cm ³						
平均值 ρ_s g/cm ³						
試料番号(深さ)						
ピクノメーター No.						
(試料+蒸留水+ピクノメーター)の質量 m ь g						
m をはかったときの内容物の温度 T $^{\circ}$ C						
T℃における蒸留水の密度 ρ _w (T)g/cm ³						
温度 T^{∞} の蒸留水を満たしたときの ¹⁾ (蒸留水+ピクノメーター)質量 M_{a}^{a} g						
容 器 No.						
試 料 の (炉乾燥試料+容器)質量g						
炉乾燥質量 容 器 質 量 g						
<i>m</i> _s g						
土 粒 子 の 密 度 ρ_s g/cm ³						
平均值ρ _s g/cm ³		ı			1	

特記事項

1) ピクノメーターの検定結果から求める。

$$\rho_{s} = \frac{m_{s}}{m_{s} + (m_{s} - m_{b})} \times \rho_{w}(T)$$

J	ΙS	А	1	2	0	3	
Т	G S		0	1	2	1	

調査件名 汚泥再生処理センター建設に係る調査計画及び発注支援業務 試験年月日 2020年 10月 20日

試 驗 者 杉木 敏郎

m。:容器質量

				叫 吹 1	目 化平 戰印	
試料番号 (深さ)	B-4-2 (2.15∼	-2.45m)		B-4-5 (5.15~	~5.45m)	
容 器 No.	106	18	109	25	124	180
ma g	60.22	60.13	60.47	62.04	62.44	62.20
m₅ g	56.77	56.54	56.99	57.05	57.28	57.17
m₀ g	18.92	18.89	19.26	19.87	19.12	18.82
	9.1	9.5	9.2	13. 4	13.5	13.1
平均值 <i>11</i> %		9.3			13.3	
特記事項						
試料番号 (深さ)						
容器 No.						
<i>m g</i>						
8 m b g						
s m σ						
竹叱ず久						
<i>m</i> a g						
$m_{ m b}$ g						
g						
平均值 W %						
符記爭リ						
試料番号(深さ)						
容器 No.						
ma g						
m _b g						
m₀ g						
<i>w</i> %						
平均值 w %						
特記事項						
	1					
試料番号(深さ)						
容器 No.						
ma g	-					
m₅ g						
m₀ g	L					
%						
平均值 w %						
特記事項						
				m - m	<i>m</i> . · (試料+	
				$w = \frac{m_{\rm a}}{m_{\rm b}} - m_{\rm c} \times$	100 <i>m</i> b:(炉乾炼	製料+容器)質量

[資料6 埋設管資料(配管図)]

